Metamath Proof Explorer


Theorem rimgim

Description: An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion rimgim F R RingIso S F R GrpIso S

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid Base S = Base S
3 1 2 rimrhm F R RingIso S F R RingHom S
4 rhmghm F R RingHom S F R GrpHom S
5 3 4 syl F R RingIso S F R GrpHom S
6 1 2 rimf1o F R RingIso S F : Base R 1-1 onto Base S
7 1 2 isgim F R GrpIso S F R GrpHom S F : Base R 1-1 onto Base S
8 5 6 7 sylanbrc F R RingIso S F R GrpIso S