Metamath Proof Explorer
Table of Contents - 10.6.1. Definition and basic properties
- clvec
- df-lvec
- islvec
- lvecdrng
- lveclmod
- lsslvec
- lvecvs0or
- lvecvsn0
- lssvs0or
- lvecvscan
- lvecvscan2
- lvecinv
- lspsnvs
- lspsneleq
- lspsncmp
- lspsnne1
- lspsnne2
- lspsnnecom
- lspabs2
- lspabs3
- lspsneq
- lspsneu
- lspsnel4
- lspdisj
- lspdisjb
- lspdisj2
- lspfixed
- lspexch
- lspexchn1
- lspexchn2
- lspindpi
- lspindp1
- lspindp2l
- lspindp2
- lspindp3
- lspindp4
- lvecindp
- lvecindp2
- lspsnsubn0
- lsmcv
- lspsolvlem
- lspsolv
- lssacsex
- lspsnat
- lspsncv0
- lsppratlem1
- lsppratlem2
- lsppratlem3
- lsppratlem4
- lsppratlem5
- lsppratlem6
- lspprat
- islbs2
- islbs3
- lbsacsbs
- lvecdim
- lbsextlem1
- lbsextlem2
- lbsextlem3
- lbsextlem4
- lbsextg
- lbsext
- lbsexg
- lbsex
- lvecprop2d
- lvecpropd