Metamath Proof Explorer


Theorem ipsubdi

Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipsubdir.m -˙=-W
ipsubdir.s S=-F
Assertion ipsubdi WPreHilAVBVCVA,˙B-˙C=A,˙BSA,˙C

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipsubdir.m -˙=-W
5 ipsubdir.s S=-F
6 simpl WPreHilAVBVCVWPreHil
7 simpr1 WPreHilAVBVCVAV
8 phllmod WPreHilWLMod
9 8 adantr WPreHilAVBVCVWLMod
10 lmodgrp WLModWGrp
11 9 10 syl WPreHilAVBVCVWGrp
12 simpr2 WPreHilAVBVCVBV
13 simpr3 WPreHilAVBVCVCV
14 3 4 grpsubcl WGrpBVCVB-˙CV
15 11 12 13 14 syl3anc WPreHilAVBVCVB-˙CV
16 eqid +W=+W
17 eqid +F=+F
18 1 2 3 16 17 ipdi WPreHilAVB-˙CVCVA,˙B-˙C+WC=A,˙B-˙C+FA,˙C
19 6 7 15 13 18 syl13anc WPreHilAVBVCVA,˙B-˙C+WC=A,˙B-˙C+FA,˙C
20 3 16 4 grpnpcan WGrpBVCVB-˙C+WC=B
21 11 12 13 20 syl3anc WPreHilAVBVCVB-˙C+WC=B
22 21 oveq2d WPreHilAVBVCVA,˙B-˙C+WC=A,˙B
23 19 22 eqtr3d WPreHilAVBVCVA,˙B-˙C+FA,˙C=A,˙B
24 1 lmodfgrp WLModFGrp
25 9 24 syl WPreHilAVBVCVFGrp
26 eqid BaseF=BaseF
27 1 2 3 26 ipcl WPreHilAVBVA,˙BBaseF
28 6 7 12 27 syl3anc WPreHilAVBVCVA,˙BBaseF
29 1 2 3 26 ipcl WPreHilAVCVA,˙CBaseF
30 6 7 13 29 syl3anc WPreHilAVBVCVA,˙CBaseF
31 1 2 3 26 ipcl WPreHilAVB-˙CVA,˙B-˙CBaseF
32 6 7 15 31 syl3anc WPreHilAVBVCVA,˙B-˙CBaseF
33 26 17 5 grpsubadd FGrpA,˙BBaseFA,˙CBaseFA,˙B-˙CBaseFA,˙BSA,˙C=A,˙B-˙CA,˙B-˙C+FA,˙C=A,˙B
34 25 28 30 32 33 syl13anc WPreHilAVBVCVA,˙BSA,˙C=A,˙B-˙CA,˙B-˙C+FA,˙C=A,˙B
35 23 34 mpbird WPreHilAVBVCVA,˙BSA,˙C=A,˙B-˙C
36 35 eqcomd WPreHilAVBVCVA,˙B-˙C=A,˙BSA,˙C