Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phlsrng.f | |
|
phllmhm.h | |
||
phllmhm.v | |
||
ipsubdir.m | |
||
ipsubdir.s | |
||
ip2subdi.p | |
||
ip2subdi.1 | |
||
ip2subdi.2 | |
||
ip2subdi.3 | |
||
ip2subdi.4 | |
||
ip2subdi.5 | |
||
Assertion | ip2subdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | |
|
2 | phllmhm.h | |
|
3 | phllmhm.v | |
|
4 | ipsubdir.m | |
|
5 | ipsubdir.s | |
|
6 | ip2subdi.p | |
|
7 | ip2subdi.1 | |
|
8 | ip2subdi.2 | |
|
9 | ip2subdi.3 | |
|
10 | ip2subdi.4 | |
|
11 | ip2subdi.5 | |
|
12 | eqid | |
|
13 | phllmod | |
|
14 | 7 13 | syl | |
15 | 1 | lmodring | |
16 | 14 15 | syl | |
17 | ringabl | |
|
18 | 16 17 | syl | |
19 | 1 2 3 12 | ipcl | |
20 | 7 8 10 19 | syl3anc | |
21 | 1 2 3 12 | ipcl | |
22 | 7 8 11 21 | syl3anc | |
23 | 1 2 3 12 | ipcl | |
24 | 7 9 10 23 | syl3anc | |
25 | 12 6 5 18 20 22 24 | ablsubsub4 | |
26 | 25 | oveq1d | |
27 | 3 4 | lmodvsubcl | |
28 | 14 10 11 27 | syl3anc | |
29 | 1 2 3 4 5 | ipsubdir | |
30 | 7 8 9 28 29 | syl13anc | |
31 | 1 2 3 4 5 | ipsubdi | |
32 | 7 8 10 11 31 | syl13anc | |
33 | 1 2 3 4 5 | ipsubdi | |
34 | 7 9 10 11 33 | syl13anc | |
35 | 32 34 | oveq12d | |
36 | ringgrp | |
|
37 | 16 36 | syl | |
38 | 12 5 | grpsubcl | |
39 | 37 20 22 38 | syl3anc | |
40 | 1 2 3 12 | ipcl | |
41 | 7 9 11 40 | syl3anc | |
42 | 12 6 5 18 39 24 41 | ablsubsub | |
43 | 30 35 42 | 3eqtrd | |
44 | 12 6 | ringacl | |
45 | 16 22 24 44 | syl3anc | |
46 | 12 6 5 | abladdsub | |
47 | 18 20 41 45 46 | syl13anc | |
48 | 26 43 47 | 3eqtr4d | |