| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phlsrng.f |
|
| 2 |
|
phllmhm.h |
|
| 3 |
|
phllmhm.v |
|
| 4 |
|
ipsubdir.m |
|
| 5 |
|
ipsubdir.s |
|
| 6 |
|
ip2subdi.p |
|
| 7 |
|
ip2subdi.1 |
|
| 8 |
|
ip2subdi.2 |
|
| 9 |
|
ip2subdi.3 |
|
| 10 |
|
ip2subdi.4 |
|
| 11 |
|
ip2subdi.5 |
|
| 12 |
|
eqid |
|
| 13 |
|
phllmod |
|
| 14 |
7 13
|
syl |
|
| 15 |
1
|
lmodring |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
ringabl |
|
| 18 |
16 17
|
syl |
|
| 19 |
1 2 3 12
|
ipcl |
|
| 20 |
7 8 10 19
|
syl3anc |
|
| 21 |
1 2 3 12
|
ipcl |
|
| 22 |
7 8 11 21
|
syl3anc |
|
| 23 |
1 2 3 12
|
ipcl |
|
| 24 |
7 9 10 23
|
syl3anc |
|
| 25 |
12 6 5 18 20 22 24
|
ablsubsub4 |
|
| 26 |
25
|
oveq1d |
|
| 27 |
3 4
|
lmodvsubcl |
|
| 28 |
14 10 11 27
|
syl3anc |
|
| 29 |
1 2 3 4 5
|
ipsubdir |
|
| 30 |
7 8 9 28 29
|
syl13anc |
|
| 31 |
1 2 3 4 5
|
ipsubdi |
|
| 32 |
7 8 10 11 31
|
syl13anc |
|
| 33 |
1 2 3 4 5
|
ipsubdi |
|
| 34 |
7 9 10 11 33
|
syl13anc |
|
| 35 |
32 34
|
oveq12d |
|
| 36 |
|
ringgrp |
|
| 37 |
16 36
|
syl |
|
| 38 |
12 5
|
grpsubcl |
|
| 39 |
37 20 22 38
|
syl3anc |
|
| 40 |
1 2 3 12
|
ipcl |
|
| 41 |
7 9 11 40
|
syl3anc |
|
| 42 |
12 6 5 18 39 24 41
|
ablsubsub |
|
| 43 |
30 35 42
|
3eqtrd |
|
| 44 |
12 6
|
ringacl |
|
| 45 |
16 22 24 44
|
syl3anc |
|
| 46 |
12 6 5
|
abladdsub |
|
| 47 |
18 20 41 45 46
|
syl13anc |
|
| 48 |
26 43 47
|
3eqtr4d |
|