Metamath Proof Explorer


Theorem ip2subdi

Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipsubdir.m -˙=-W
ipsubdir.s S=-F
ip2subdi.p +˙=+F
ip2subdi.1 φWPreHil
ip2subdi.2 φAV
ip2subdi.3 φBV
ip2subdi.4 φCV
ip2subdi.5 φDV
Assertion ip2subdi φA-˙B,˙C-˙D=A,˙C+˙B,˙DSA,˙D+˙B,˙C

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipsubdir.m -˙=-W
5 ipsubdir.s S=-F
6 ip2subdi.p +˙=+F
7 ip2subdi.1 φWPreHil
8 ip2subdi.2 φAV
9 ip2subdi.3 φBV
10 ip2subdi.4 φCV
11 ip2subdi.5 φDV
12 eqid BaseF=BaseF
13 phllmod WPreHilWLMod
14 7 13 syl φWLMod
15 1 lmodring WLModFRing
16 14 15 syl φFRing
17 ringabl FRingFAbel
18 16 17 syl φFAbel
19 1 2 3 12 ipcl WPreHilAVCVA,˙CBaseF
20 7 8 10 19 syl3anc φA,˙CBaseF
21 1 2 3 12 ipcl WPreHilAVDVA,˙DBaseF
22 7 8 11 21 syl3anc φA,˙DBaseF
23 1 2 3 12 ipcl WPreHilBVCVB,˙CBaseF
24 7 9 10 23 syl3anc φB,˙CBaseF
25 12 6 5 18 20 22 24 ablsubsub4 φA,˙CSA,˙DSB,˙C=A,˙CSA,˙D+˙B,˙C
26 25 oveq1d φA,˙CSA,˙DSB,˙C+˙B,˙D=A,˙CSA,˙D+˙B,˙C+˙B,˙D
27 3 4 lmodvsubcl WLModCVDVC-˙DV
28 14 10 11 27 syl3anc φC-˙DV
29 1 2 3 4 5 ipsubdir WPreHilAVBVC-˙DVA-˙B,˙C-˙D=A,˙C-˙DSB,˙C-˙D
30 7 8 9 28 29 syl13anc φA-˙B,˙C-˙D=A,˙C-˙DSB,˙C-˙D
31 1 2 3 4 5 ipsubdi WPreHilAVCVDVA,˙C-˙D=A,˙CSA,˙D
32 7 8 10 11 31 syl13anc φA,˙C-˙D=A,˙CSA,˙D
33 1 2 3 4 5 ipsubdi WPreHilBVCVDVB,˙C-˙D=B,˙CSB,˙D
34 7 9 10 11 33 syl13anc φB,˙C-˙D=B,˙CSB,˙D
35 32 34 oveq12d φA,˙C-˙DSB,˙C-˙D=A,˙CSA,˙DSB,˙CSB,˙D
36 ringgrp FRingFGrp
37 16 36 syl φFGrp
38 12 5 grpsubcl FGrpA,˙CBaseFA,˙DBaseFA,˙CSA,˙DBaseF
39 37 20 22 38 syl3anc φA,˙CSA,˙DBaseF
40 1 2 3 12 ipcl WPreHilBVDVB,˙DBaseF
41 7 9 11 40 syl3anc φB,˙DBaseF
42 12 6 5 18 39 24 41 ablsubsub φA,˙CSA,˙DSB,˙CSB,˙D=A,˙CSA,˙DSB,˙C+˙B,˙D
43 30 35 42 3eqtrd φA-˙B,˙C-˙D=A,˙CSA,˙DSB,˙C+˙B,˙D
44 12 6 ringacl FRingA,˙DBaseFB,˙CBaseFA,˙D+˙B,˙CBaseF
45 16 22 24 44 syl3anc φA,˙D+˙B,˙CBaseF
46 12 6 5 abladdsub FAbelA,˙CBaseFB,˙DBaseFA,˙D+˙B,˙CBaseFA,˙C+˙B,˙DSA,˙D+˙B,˙C=A,˙CSA,˙D+˙B,˙C+˙B,˙D
47 18 20 41 45 46 syl13anc φA,˙C+˙B,˙DSA,˙D+˙B,˙C=A,˙CSA,˙D+˙B,˙C+˙B,˙D
48 26 43 47 3eqtr4d φA-˙B,˙C-˙D=A,˙C+˙B,˙DSA,˙D+˙B,˙C