Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phlsrng.f | |
|
phllmhm.h | |
||
phllmhm.v | |
||
ipsubdir.m | |
||
ipsubdir.s | |
||
Assertion | ipsubdir | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | |
|
2 | phllmhm.h | |
|
3 | phllmhm.v | |
|
4 | ipsubdir.m | |
|
5 | ipsubdir.s | |
|
6 | simpl | |
|
7 | phllmod | |
|
8 | 7 | adantr | |
9 | lmodgrp | |
|
10 | 8 9 | syl | |
11 | simpr1 | |
|
12 | simpr2 | |
|
13 | 3 4 | grpsubcl | |
14 | 10 11 12 13 | syl3anc | |
15 | simpr3 | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 1 2 3 16 17 | ipdir | |
19 | 6 14 12 15 18 | syl13anc | |
20 | 3 16 4 | grpnpcan | |
21 | 10 11 12 20 | syl3anc | |
22 | 21 | oveq1d | |
23 | 19 22 | eqtr3d | |
24 | 1 | lmodfgrp | |
25 | 8 24 | syl | |
26 | eqid | |
|
27 | 1 2 3 26 | ipcl | |
28 | 6 11 15 27 | syl3anc | |
29 | 1 2 3 26 | ipcl | |
30 | 6 12 15 29 | syl3anc | |
31 | 1 2 3 26 | ipcl | |
32 | 6 14 15 31 | syl3anc | |
33 | 26 17 5 | grpsubadd | |
34 | 25 28 30 32 33 | syl13anc | |
35 | 23 34 | mpbird | |
36 | 35 | eqcomd | |