Metamath Proof Explorer


Theorem ipsubdir

Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipsubdir.m -˙=-W
ipsubdir.s S=-F
Assertion ipsubdir WPreHilAVBVCVA-˙B,˙C=A,˙CSB,˙C

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipsubdir.m -˙=-W
5 ipsubdir.s S=-F
6 simpl WPreHilAVBVCVWPreHil
7 phllmod WPreHilWLMod
8 7 adantr WPreHilAVBVCVWLMod
9 lmodgrp WLModWGrp
10 8 9 syl WPreHilAVBVCVWGrp
11 simpr1 WPreHilAVBVCVAV
12 simpr2 WPreHilAVBVCVBV
13 3 4 grpsubcl WGrpAVBVA-˙BV
14 10 11 12 13 syl3anc WPreHilAVBVCVA-˙BV
15 simpr3 WPreHilAVBVCVCV
16 eqid +W=+W
17 eqid +F=+F
18 1 2 3 16 17 ipdir WPreHilA-˙BVBVCVA-˙B+WB,˙C=A-˙B,˙C+FB,˙C
19 6 14 12 15 18 syl13anc WPreHilAVBVCVA-˙B+WB,˙C=A-˙B,˙C+FB,˙C
20 3 16 4 grpnpcan WGrpAVBVA-˙B+WB=A
21 10 11 12 20 syl3anc WPreHilAVBVCVA-˙B+WB=A
22 21 oveq1d WPreHilAVBVCVA-˙B+WB,˙C=A,˙C
23 19 22 eqtr3d WPreHilAVBVCVA-˙B,˙C+FB,˙C=A,˙C
24 1 lmodfgrp WLModFGrp
25 8 24 syl WPreHilAVBVCVFGrp
26 eqid BaseF=BaseF
27 1 2 3 26 ipcl WPreHilAVCVA,˙CBaseF
28 6 11 15 27 syl3anc WPreHilAVBVCVA,˙CBaseF
29 1 2 3 26 ipcl WPreHilBVCVB,˙CBaseF
30 6 12 15 29 syl3anc WPreHilAVBVCVB,˙CBaseF
31 1 2 3 26 ipcl WPreHilA-˙BVCVA-˙B,˙CBaseF
32 6 14 15 31 syl3anc WPreHilAVBVCVA-˙B,˙CBaseF
33 26 17 5 grpsubadd FGrpA,˙CBaseFB,˙CBaseFA-˙B,˙CBaseFA,˙CSB,˙C=A-˙B,˙CA-˙B,˙C+FB,˙C=A,˙C
34 25 28 30 32 33 syl13anc WPreHilAVBVCVA,˙CSB,˙C=A-˙B,˙CA-˙B,˙C+FB,˙C=A,˙C
35 23 34 mpbird WPreHilAVBVCVA,˙CSB,˙C=A-˙B,˙C
36 35 eqcomd WPreHilAVBVCVA-˙B,˙C=A,˙CSB,˙C