Metamath Proof Explorer


Theorem ipcl

Description: Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipcl.f K=BaseF
Assertion ipcl WPreHilAVBVA,˙BK

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipcl.f K=BaseF
5 eqid xVx,˙B=xVx,˙B
6 1 2 3 5 phllmhm WPreHilBVxVx,˙BWLMHomringLModF
7 rlmbas BaseF=BaseringLModF
8 4 7 eqtri K=BaseringLModF
9 3 8 lmhmf xVx,˙BWLMHomringLModFxVx,˙B:VK
10 6 9 syl WPreHilBVxVx,˙B:VK
11 5 fmpt xVx,˙BKxVx,˙B:VK
12 10 11 sylibr WPreHilBVxVx,˙BK
13 oveq1 x=Ax,˙B=A,˙B
14 13 eleq1d x=Ax,˙BKA,˙BK
15 14 rspccva xVx,˙BKAVA,˙BK
16 12 15 stoic3 WPreHilBVAVA,˙BK
17 16 3com23 WPreHilAVBVA,˙BK