Metamath Proof Explorer


Theorem ablsubsub

Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablsubadd.b B = Base G
ablsubadd.p + ˙ = + G
ablsubadd.m - ˙ = - G
ablsubsub.g φ G Abel
ablsubsub.x φ X B
ablsubsub.y φ Y B
ablsubsub.z φ Z B
Assertion ablsubsub φ X - ˙ Y - ˙ Z = X - ˙ Y + ˙ Z

Proof

Step Hyp Ref Expression
1 ablsubadd.b B = Base G
2 ablsubadd.p + ˙ = + G
3 ablsubadd.m - ˙ = - G
4 ablsubsub.g φ G Abel
5 ablsubsub.x φ X B
6 ablsubsub.y φ Y B
7 ablsubsub.z φ Z B
8 ablgrp G Abel G Grp
9 4 8 syl φ G Grp
10 1 2 3 grpsubsub G Grp X B Y B Z B X - ˙ Y - ˙ Z = X + ˙ Z - ˙ Y
11 9 5 6 7 10 syl13anc φ X - ˙ Y - ˙ Z = X + ˙ Z - ˙ Y
12 1 2 3 grpaddsubass G Grp X B Z B Y B X + ˙ Z - ˙ Y = X + ˙ Z - ˙ Y
13 9 5 7 6 12 syl13anc φ X + ˙ Z - ˙ Y = X + ˙ Z - ˙ Y
14 1 2 3 abladdsub G Abel X B Z B Y B X + ˙ Z - ˙ Y = X - ˙ Y + ˙ Z
15 4 5 7 6 14 syl13anc φ X + ˙ Z - ˙ Y = X - ˙ Y + ˙ Z
16 11 13 15 3eqtr2d φ X - ˙ Y - ˙ Z = X - ˙ Y + ˙ Z