Metamath Proof Explorer


Theorem grpaddsubass

Description: Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses grpsubadd.b B=BaseG
grpsubadd.p +˙=+G
grpsubadd.m -˙=-G
Assertion grpaddsubass GGrpXBYBZBX+˙Y-˙Z=X+˙Y-˙Z

Proof

Step Hyp Ref Expression
1 grpsubadd.b B=BaseG
2 grpsubadd.p +˙=+G
3 grpsubadd.m -˙=-G
4 simpl GGrpXBYBZBGGrp
5 simpr1 GGrpXBYBZBXB
6 simpr2 GGrpXBYBZBYB
7 eqid invgG=invgG
8 1 7 grpinvcl GGrpZBinvgGZB
9 8 3ad2antr3 GGrpXBYBZBinvgGZB
10 1 2 grpass GGrpXBYBinvgGZBX+˙Y+˙invgGZ=X+˙Y+˙invgGZ
11 4 5 6 9 10 syl13anc GGrpXBYBZBX+˙Y+˙invgGZ=X+˙Y+˙invgGZ
12 1 2 grpcl GGrpXBYBX+˙YB
13 12 3adant3r3 GGrpXBYBZBX+˙YB
14 simpr3 GGrpXBYBZBZB
15 1 2 7 3 grpsubval X+˙YBZBX+˙Y-˙Z=X+˙Y+˙invgGZ
16 13 14 15 syl2anc GGrpXBYBZBX+˙Y-˙Z=X+˙Y+˙invgGZ
17 1 2 7 3 grpsubval YBZBY-˙Z=Y+˙invgGZ
18 6 14 17 syl2anc GGrpXBYBZBY-˙Z=Y+˙invgGZ
19 18 oveq2d GGrpXBYBZBX+˙Y-˙Z=X+˙Y+˙invgGZ
20 11 16 19 3eqtr4d GGrpXBYBZBX+˙Y-˙Z=X+˙Y-˙Z