Metamath Proof Explorer


Theorem ablsubsub

Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
ablsubadd.p + = ( +g𝐺 )
ablsubadd.m = ( -g𝐺 )
ablsubsub.g ( 𝜑𝐺 ∈ Abel )
ablsubsub.x ( 𝜑𝑋𝐵 )
ablsubsub.y ( 𝜑𝑌𝐵 )
ablsubsub.z ( 𝜑𝑍𝐵 )
Assertion ablsubsub ( 𝜑 → ( 𝑋 ( 𝑌 𝑍 ) ) = ( ( 𝑋 𝑌 ) + 𝑍 ) )

Proof

Step Hyp Ref Expression
1 ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
2 ablsubadd.p + = ( +g𝐺 )
3 ablsubadd.m = ( -g𝐺 )
4 ablsubsub.g ( 𝜑𝐺 ∈ Abel )
5 ablsubsub.x ( 𝜑𝑋𝐵 )
6 ablsubsub.y ( 𝜑𝑌𝐵 )
7 ablsubsub.z ( 𝜑𝑍𝐵 )
8 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
9 4 8 syl ( 𝜑𝐺 ∈ Grp )
10 1 2 3 grpsubsub ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )
11 9 5 6 7 10 syl13anc ( 𝜑 → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )
12 1 2 3 grpaddsubass ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑍𝐵𝑌𝐵 ) ) → ( ( 𝑋 + 𝑍 ) 𝑌 ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )
13 9 5 7 6 12 syl13anc ( 𝜑 → ( ( 𝑋 + 𝑍 ) 𝑌 ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )
14 1 2 3 abladdsub ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑍𝐵𝑌𝐵 ) ) → ( ( 𝑋 + 𝑍 ) 𝑌 ) = ( ( 𝑋 𝑌 ) + 𝑍 ) )
15 4 5 7 6 14 syl13anc ( 𝜑 → ( ( 𝑋 + 𝑍 ) 𝑌 ) = ( ( 𝑋 𝑌 ) + 𝑍 ) )
16 11 13 15 3eqtr2d ( 𝜑 → ( 𝑋 ( 𝑌 𝑍 ) ) = ( ( 𝑋 𝑌 ) + 𝑍 ) )