Metamath Proof Explorer


Theorem ablsubsub4

Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
ablsubadd.p + = ( +g𝐺 )
ablsubadd.m = ( -g𝐺 )
ablsubsub.g ( 𝜑𝐺 ∈ Abel )
ablsubsub.x ( 𝜑𝑋𝐵 )
ablsubsub.y ( 𝜑𝑌𝐵 )
ablsubsub.z ( 𝜑𝑍𝐵 )
Assertion ablsubsub4 ( 𝜑 → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑋 ( 𝑌 + 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
2 ablsubadd.p + = ( +g𝐺 )
3 ablsubadd.m = ( -g𝐺 )
4 ablsubsub.g ( 𝜑𝐺 ∈ Abel )
5 ablsubsub.x ( 𝜑𝑋𝐵 )
6 ablsubsub.y ( 𝜑𝑌𝐵 )
7 ablsubsub.z ( 𝜑𝑍𝐵 )
8 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
9 4 8 syl ( 𝜑𝐺 ∈ Grp )
10 1 3 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
11 9 5 6 10 syl3anc ( 𝜑 → ( 𝑋 𝑌 ) ∈ 𝐵 )
12 eqid ( invg𝐺 ) = ( invg𝐺 )
13 1 2 12 3 grpsubval ( ( ( 𝑋 𝑌 ) ∈ 𝐵𝑍𝐵 ) → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑋 𝑌 ) + ( ( invg𝐺 ) ‘ 𝑍 ) ) )
14 11 7 13 syl2anc ( 𝜑 → ( ( 𝑋 𝑌 ) 𝑍 ) = ( ( 𝑋 𝑌 ) + ( ( invg𝐺 ) ‘ 𝑍 ) ) )
15 1 12 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑍𝐵 ) → ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 )
16 9 7 15 syl2anc ( 𝜑 → ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 )
17 1 2 3 4 5 6 16 ablsubsub ( 𝜑 → ( 𝑋 ( 𝑌 ( ( invg𝐺 ) ‘ 𝑍 ) ) ) = ( ( 𝑋 𝑌 ) + ( ( invg𝐺 ) ‘ 𝑍 ) ) )
18 1 2 3 12 9 6 7 grpsubinv ( 𝜑 → ( 𝑌 ( ( invg𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 + 𝑍 ) )
19 18 oveq2d ( 𝜑 → ( 𝑋 ( 𝑌 ( ( invg𝐺 ) ‘ 𝑍 ) ) ) = ( 𝑋 ( 𝑌 + 𝑍 ) ) )
20 14 17 19 3eqtr2d ( 𝜑 → ( ( 𝑋 𝑌 ) 𝑍 ) = ( 𝑋 ( 𝑌 + 𝑍 ) ) )