Step |
Hyp |
Ref |
Expression |
1 |
|
ablsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
ablsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
ablsubsub.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
5 |
|
ablsubsub.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
ablsubsub.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
ablsubsub.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
ablpnpcan.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
9 |
|
ablpnpcan.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
10 |
|
ablpnpcan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
11 |
|
ablpnpcan.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
12 |
1 2 3
|
ablsub4 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − ( 𝑋 + 𝑍 ) ) = ( ( 𝑋 − 𝑋 ) + ( 𝑌 − 𝑍 ) ) ) |
13 |
4 5 6 5 7 12
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) − ( 𝑋 + 𝑍 ) ) = ( ( 𝑋 − 𝑋 ) + ( 𝑌 − 𝑍 ) ) ) |
14 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
17 |
1 16 3
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
18 |
15 5 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑋 ) + ( 𝑌 − 𝑍 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑌 − 𝑍 ) ) ) |
20 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
21 |
15 6 7 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
22 |
1 2 16
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 − 𝑍 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑌 − 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |
23 |
15 21 22
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝐺 ) + ( 𝑌 − 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |
24 |
13 19 23
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) − ( 𝑋 + 𝑍 ) ) = ( 𝑌 − 𝑍 ) ) |