Step |
Hyp |
Ref |
Expression |
1 |
|
ablsubadd.b |
|- B = ( Base ` G ) |
2 |
|
ablsubadd.p |
|- .+ = ( +g ` G ) |
3 |
|
ablsubadd.m |
|- .- = ( -g ` G ) |
4 |
|
ablsubsub.g |
|- ( ph -> G e. Abel ) |
5 |
|
ablsubsub.x |
|- ( ph -> X e. B ) |
6 |
|
ablsubsub.y |
|- ( ph -> Y e. B ) |
7 |
|
ablsubsub.z |
|- ( ph -> Z e. B ) |
8 |
|
ablpnpcan.g |
|- ( ph -> G e. Abel ) |
9 |
|
ablpnpcan.x |
|- ( ph -> X e. B ) |
10 |
|
ablpnpcan.y |
|- ( ph -> Y e. B ) |
11 |
|
ablpnpcan.z |
|- ( ph -> Z e. B ) |
12 |
1 2 3
|
ablsub4 |
|- ( ( G e. Abel /\ ( X e. B /\ Y e. B ) /\ ( X e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( ( X .- X ) .+ ( Y .- Z ) ) ) |
13 |
4 5 6 5 7 12
|
syl122anc |
|- ( ph -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( ( X .- X ) .+ ( Y .- Z ) ) ) |
14 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
15 |
4 14
|
syl |
|- ( ph -> G e. Grp ) |
16 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
17 |
1 16 3
|
grpsubid |
|- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = ( 0g ` G ) ) |
18 |
15 5 17
|
syl2anc |
|- ( ph -> ( X .- X ) = ( 0g ` G ) ) |
19 |
18
|
oveq1d |
|- ( ph -> ( ( X .- X ) .+ ( Y .- Z ) ) = ( ( 0g ` G ) .+ ( Y .- Z ) ) ) |
20 |
1 3
|
grpsubcl |
|- ( ( G e. Grp /\ Y e. B /\ Z e. B ) -> ( Y .- Z ) e. B ) |
21 |
15 6 7 20
|
syl3anc |
|- ( ph -> ( Y .- Z ) e. B ) |
22 |
1 2 16
|
grplid |
|- ( ( G e. Grp /\ ( Y .- Z ) e. B ) -> ( ( 0g ` G ) .+ ( Y .- Z ) ) = ( Y .- Z ) ) |
23 |
15 21 22
|
syl2anc |
|- ( ph -> ( ( 0g ` G ) .+ ( Y .- Z ) ) = ( Y .- Z ) ) |
24 |
13 19 23
|
3eqtrd |
|- ( ph -> ( ( X .+ Y ) .- ( X .+ Z ) ) = ( Y .- Z ) ) |