Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubid.b |
|- B = ( Base ` G ) |
2 |
|
grpsubid.o |
|- .0. = ( 0g ` G ) |
3 |
|
grpsubid.m |
|- .- = ( -g ` G ) |
4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
5 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
6 |
1 4 5 3
|
grpsubval |
|- ( ( X e. B /\ X e. B ) -> ( X .- X ) = ( X ( +g ` G ) ( ( invg ` G ) ` X ) ) ) |
7 |
6
|
anidms |
|- ( X e. B -> ( X .- X ) = ( X ( +g ` G ) ( ( invg ` G ) ` X ) ) ) |
8 |
7
|
adantl |
|- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = ( X ( +g ` G ) ( ( invg ` G ) ` X ) ) ) |
9 |
1 4 2 5
|
grprinv |
|- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` X ) ) = .0. ) |
10 |
8 9
|
eqtrd |
|- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = .0. ) |