Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubid.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpsubid.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
grpsubid.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
6 |
1 4 5 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
7 |
6
|
anidms |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 − 𝑋 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
9 |
1 4 2 5
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = 0 ) |
10 |
8 9
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = 0 ) |