Metamath Proof Explorer


Theorem grpsubid

Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses grpsubid.b 𝐵 = ( Base ‘ 𝐺 )
grpsubid.o 0 = ( 0g𝐺 )
grpsubid.m = ( -g𝐺 )
Assertion grpsubid ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = 0 )

Proof

Step Hyp Ref Expression
1 grpsubid.b 𝐵 = ( Base ‘ 𝐺 )
2 grpsubid.o 0 = ( 0g𝐺 )
3 grpsubid.m = ( -g𝐺 )
4 eqid ( +g𝐺 ) = ( +g𝐺 )
5 eqid ( invg𝐺 ) = ( invg𝐺 )
6 1 4 5 3 grpsubval ( ( 𝑋𝐵𝑋𝐵 ) → ( 𝑋 𝑋 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑋 ) ) )
7 6 anidms ( 𝑋𝐵 → ( 𝑋 𝑋 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑋 ) ) )
8 7 adantl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑋 ) ) )
9 1 4 2 5 grprinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑋 ) ) = 0 )
10 8 9 eqtrd ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = 0 )