Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpsubid
Next ⟩
grpsubid1
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpsubid
Description:
Subtraction of a group element from itself.
(Contributed by
NM
, 31-Mar-2014)
Ref
Expression
Hypotheses
grpsubid.b
⊢
B
=
Base
G
grpsubid.o
⊢
0
˙
=
0
G
grpsubid.m
⊢
-
˙
=
-
G
Assertion
grpsubid
⊢
G
∈
Grp
∧
X
∈
B
→
X
-
˙
X
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
grpsubid.b
⊢
B
=
Base
G
2
grpsubid.o
⊢
0
˙
=
0
G
3
grpsubid.m
⊢
-
˙
=
-
G
4
eqid
⊢
+
G
=
+
G
5
eqid
⊢
inv
g
⁡
G
=
inv
g
⁡
G
6
1
4
5
3
grpsubval
⊢
X
∈
B
∧
X
∈
B
→
X
-
˙
X
=
X
+
G
inv
g
⁡
G
⁡
X
7
6
anidms
⊢
X
∈
B
→
X
-
˙
X
=
X
+
G
inv
g
⁡
G
⁡
X
8
7
adantl
⊢
G
∈
Grp
∧
X
∈
B
→
X
-
˙
X
=
X
+
G
inv
g
⁡
G
⁡
X
9
1
4
2
5
grprinv
⊢
G
∈
Grp
∧
X
∈
B
→
X
+
G
inv
g
⁡
G
⁡
X
=
0
˙
10
8
9
eqtrd
⊢
G
∈
Grp
∧
X
∈
B
→
X
-
˙
X
=
0
˙