Metamath Proof Explorer


Theorem grpsubid

Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses grpsubid.b B = Base G
grpsubid.o 0 ˙ = 0 G
grpsubid.m - ˙ = - G
Assertion grpsubid G Grp X B X - ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 grpsubid.b B = Base G
2 grpsubid.o 0 ˙ = 0 G
3 grpsubid.m - ˙ = - G
4 eqid + G = + G
5 eqid inv g G = inv g G
6 1 4 5 3 grpsubval X B X B X - ˙ X = X + G inv g G X
7 6 anidms X B X - ˙ X = X + G inv g G X
8 7 adantl G Grp X B X - ˙ X = X + G inv g G X
9 1 4 2 5 grprinv G Grp X B X + G inv g G X = 0 ˙
10 8 9 eqtrd G Grp X B X - ˙ X = 0 ˙