Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubid.b |
|- B = ( Base ` G ) |
2 |
|
grpsubid.o |
|- .0. = ( 0g ` G ) |
3 |
|
grpsubid.m |
|- .- = ( -g ` G ) |
4 |
|
id |
|- ( X e. B -> X e. B ) |
5 |
1 2
|
grpidcl |
|- ( G e. Grp -> .0. e. B ) |
6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
7 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
8 |
1 6 7 3
|
grpsubval |
|- ( ( X e. B /\ .0. e. B ) -> ( X .- .0. ) = ( X ( +g ` G ) ( ( invg ` G ) ` .0. ) ) ) |
9 |
4 5 8
|
syl2anr |
|- ( ( G e. Grp /\ X e. B ) -> ( X .- .0. ) = ( X ( +g ` G ) ( ( invg ` G ) ` .0. ) ) ) |
10 |
2 7
|
grpinvid |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
11 |
10
|
adantr |
|- ( ( G e. Grp /\ X e. B ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
12 |
11
|
oveq2d |
|- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` .0. ) ) = ( X ( +g ` G ) .0. ) ) |
13 |
1 6 2
|
grprid |
|- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) .0. ) = X ) |
14 |
9 12 13
|
3eqtrd |
|- ( ( G e. Grp /\ X e. B ) -> ( X .- .0. ) = X ) |