Metamath Proof Explorer


Theorem grpsubid1

Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypotheses grpsubid.b
|- B = ( Base ` G )
grpsubid.o
|- .0. = ( 0g ` G )
grpsubid.m
|- .- = ( -g ` G )
Assertion grpsubid1
|- ( ( G e. Grp /\ X e. B ) -> ( X .- .0. ) = X )

Proof

Step Hyp Ref Expression
1 grpsubid.b
 |-  B = ( Base ` G )
2 grpsubid.o
 |-  .0. = ( 0g ` G )
3 grpsubid.m
 |-  .- = ( -g ` G )
4 id
 |-  ( X e. B -> X e. B )
5 1 2 grpidcl
 |-  ( G e. Grp -> .0. e. B )
6 eqid
 |-  ( +g ` G ) = ( +g ` G )
7 eqid
 |-  ( invg ` G ) = ( invg ` G )
8 1 6 7 3 grpsubval
 |-  ( ( X e. B /\ .0. e. B ) -> ( X .- .0. ) = ( X ( +g ` G ) ( ( invg ` G ) ` .0. ) ) )
9 4 5 8 syl2anr
 |-  ( ( G e. Grp /\ X e. B ) -> ( X .- .0. ) = ( X ( +g ` G ) ( ( invg ` G ) ` .0. ) ) )
10 2 7 grpinvid
 |-  ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. )
11 10 adantr
 |-  ( ( G e. Grp /\ X e. B ) -> ( ( invg ` G ) ` .0. ) = .0. )
12 11 oveq2d
 |-  ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` .0. ) ) = ( X ( +g ` G ) .0. ) )
13 1 6 2 grprid
 |-  ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) .0. ) = X )
14 9 12 13 3eqtrd
 |-  ( ( G e. Grp /\ X e. B ) -> ( X .- .0. ) = X )