| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ablsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
ablsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 6 |
|
simp2l |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 7 |
|
simp2r |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 8 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 9 |
5 6 7 8
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 10 |
|
simp3l |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 11 |
|
simp3r |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑊 ∈ 𝐵 ) |
| 12 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
| 13 |
5 10 11 12
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
| 14 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 15 |
1 2 14 3
|
grpsubval |
⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑊 ) ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) − ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) ) ) |
| 16 |
9 13 15
|
syl2anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) ) ) |
| 17 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
| 18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐺 ∈ CMnd ) |
| 19 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 20 |
1 14
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 21 |
5 10 20
|
syl2anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 22 |
1 14
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑊 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ∈ 𝐵 ) |
| 23 |
5 11 22
|
syl2anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ∈ 𝐵 ) |
| 24 |
1 2
|
cmn4 |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) ) |
| 25 |
18 19 21 23 24
|
syl112anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) ) |
| 26 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) |
| 27 |
1 2 14
|
ablinvadd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) |
| 28 |
26 10 11 27
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) ) = ( ( 𝑋 + 𝑌 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) ) |
| 30 |
1 2 14 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 31 |
6 10 30
|
syl2anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 − 𝑍 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 32 |
1 2 14 3
|
grpsubval |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 − 𝑊 ) = ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) |
| 33 |
7 11 32
|
syl2anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑌 − 𝑊 ) = ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) |
| 34 |
31 33
|
oveq12d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) + ( 𝑌 − 𝑊 ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) ) |
| 35 |
25 29 34
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) ) = ( ( 𝑋 − 𝑍 ) + ( 𝑌 − 𝑊 ) ) ) |
| 36 |
16 35
|
eqtrd |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 − 𝑍 ) + ( 𝑌 − 𝑊 ) ) ) |