Metamath Proof Explorer


Theorem ablsub4

Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
Assertion ablsub4 GAbelXBYBZBWBX+˙Y-˙Z+˙W=X-˙Z+˙Y-˙W

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 ablgrp GAbelGGrp
5 4 3ad2ant1 GAbelXBYBZBWBGGrp
6 simp2l GAbelXBYBZBWBXB
7 simp2r GAbelXBYBZBWBYB
8 1 2 grpcl GGrpXBYBX+˙YB
9 5 6 7 8 syl3anc GAbelXBYBZBWBX+˙YB
10 simp3l GAbelXBYBZBWBZB
11 simp3r GAbelXBYBZBWBWB
12 1 2 grpcl GGrpZBWBZ+˙WB
13 5 10 11 12 syl3anc GAbelXBYBZBWBZ+˙WB
14 eqid invgG=invgG
15 1 2 14 3 grpsubval X+˙YBZ+˙WBX+˙Y-˙Z+˙W=X+˙Y+˙invgGZ+˙W
16 9 13 15 syl2anc GAbelXBYBZBWBX+˙Y-˙Z+˙W=X+˙Y+˙invgGZ+˙W
17 ablcmn GAbelGCMnd
18 17 3ad2ant1 GAbelXBYBZBWBGCMnd
19 simp2 GAbelXBYBZBWBXBYB
20 1 14 grpinvcl GGrpZBinvgGZB
21 5 10 20 syl2anc GAbelXBYBZBWBinvgGZB
22 1 14 grpinvcl GGrpWBinvgGWB
23 5 11 22 syl2anc GAbelXBYBZBWBinvgGWB
24 1 2 cmn4 GCMndXBYBinvgGZBinvgGWBX+˙Y+˙invgGZ+˙invgGW=X+˙invgGZ+˙Y+˙invgGW
25 18 19 21 23 24 syl112anc GAbelXBYBZBWBX+˙Y+˙invgGZ+˙invgGW=X+˙invgGZ+˙Y+˙invgGW
26 simp1 GAbelXBYBZBWBGAbel
27 1 2 14 ablinvadd GAbelZBWBinvgGZ+˙W=invgGZ+˙invgGW
28 26 10 11 27 syl3anc GAbelXBYBZBWBinvgGZ+˙W=invgGZ+˙invgGW
29 28 oveq2d GAbelXBYBZBWBX+˙Y+˙invgGZ+˙W=X+˙Y+˙invgGZ+˙invgGW
30 1 2 14 3 grpsubval XBZBX-˙Z=X+˙invgGZ
31 6 10 30 syl2anc GAbelXBYBZBWBX-˙Z=X+˙invgGZ
32 1 2 14 3 grpsubval YBWBY-˙W=Y+˙invgGW
33 7 11 32 syl2anc GAbelXBYBZBWBY-˙W=Y+˙invgGW
34 31 33 oveq12d GAbelXBYBZBWBX-˙Z+˙Y-˙W=X+˙invgGZ+˙Y+˙invgGW
35 25 29 34 3eqtr4d GAbelXBYBZBWBX+˙Y+˙invgGZ+˙W=X-˙Z+˙Y-˙W
36 16 35 eqtrd GAbelXBYBZBWBX+˙Y-˙Z+˙W=X-˙Z+˙Y-˙W