Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsubadd.b | |
|
ablsubadd.p | |
||
ablsubadd.m | |
||
Assertion | ablsub4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsubadd.b | |
|
2 | ablsubadd.p | |
|
3 | ablsubadd.m | |
|
4 | ablgrp | |
|
5 | 4 | 3ad2ant1 | |
6 | simp2l | |
|
7 | simp2r | |
|
8 | 1 2 | grpcl | |
9 | 5 6 7 8 | syl3anc | |
10 | simp3l | |
|
11 | simp3r | |
|
12 | 1 2 | grpcl | |
13 | 5 10 11 12 | syl3anc | |
14 | eqid | |
|
15 | 1 2 14 3 | grpsubval | |
16 | 9 13 15 | syl2anc | |
17 | ablcmn | |
|
18 | 17 | 3ad2ant1 | |
19 | simp2 | |
|
20 | 1 14 | grpinvcl | |
21 | 5 10 20 | syl2anc | |
22 | 1 14 | grpinvcl | |
23 | 5 11 22 | syl2anc | |
24 | 1 2 | cmn4 | |
25 | 18 19 21 23 24 | syl112anc | |
26 | simp1 | |
|
27 | 1 2 14 | ablinvadd | |
28 | 26 10 11 27 | syl3anc | |
29 | 28 | oveq2d | |
30 | 1 2 14 3 | grpsubval | |
31 | 6 10 30 | syl2anc | |
32 | 1 2 14 3 | grpsubval | |
33 | 7 11 32 | syl2anc | |
34 | 31 33 | oveq12d | |
35 | 25 29 34 | 3eqtr4d | |
36 | 16 35 | eqtrd | |