Metamath Proof Explorer


Theorem ablinvadd

Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses ablinvadd.b B=BaseG
ablinvadd.p +˙=+G
ablinvadd.n N=invgG
Assertion ablinvadd GAbelXBYBNX+˙Y=NX+˙NY

Proof

Step Hyp Ref Expression
1 ablinvadd.b B=BaseG
2 ablinvadd.p +˙=+G
3 ablinvadd.n N=invgG
4 ablgrp GAbelGGrp
5 1 2 3 grpinvadd GGrpXBYBNX+˙Y=NY+˙NX
6 4 5 syl3an1 GAbelXBYBNX+˙Y=NY+˙NX
7 simp1 GAbelXBYBGAbel
8 4 3ad2ant1 GAbelXBYBGGrp
9 simp2 GAbelXBYBXB
10 1 3 grpinvcl GGrpXBNXB
11 8 9 10 syl2anc GAbelXBYBNXB
12 simp3 GAbelXBYBYB
13 1 3 grpinvcl GGrpYBNYB
14 8 12 13 syl2anc GAbelXBYBNYB
15 1 2 ablcom GAbelNXBNYBNX+˙NY=NY+˙NX
16 7 11 14 15 syl3anc GAbelXBYBNX+˙NY=NY+˙NX
17 6 16 eqtr4d GAbelXBYBNX+˙Y=NX+˙NY