Metamath Proof Explorer


Theorem ablcom

Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011)

Ref Expression
Hypotheses ablcom.b B = Base G
ablcom.p + ˙ = + G
Assertion ablcom G Abel X B Y B X + ˙ Y = Y + ˙ X

Proof

Step Hyp Ref Expression
1 ablcom.b B = Base G
2 ablcom.p + ˙ = + G
3 ablcmn G Abel G CMnd
4 1 2 cmncom G CMnd X B Y B X + ˙ Y = Y + ˙ X
5 3 4 syl3an1 G Abel X B Y B X + ˙ Y = Y + ˙ X