Metamath Proof Explorer


Theorem cmn32

Description: Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablcom.b B=BaseG
ablcom.p +˙=+G
Assertion cmn32 GCMndXBYBZBX+˙Y+˙Z=X+˙Z+˙Y

Proof

Step Hyp Ref Expression
1 ablcom.b B=BaseG
2 ablcom.p +˙=+G
3 cmnmnd GCMndGMnd
4 3 adantr GCMndXBYBZBGMnd
5 simpr1 GCMndXBYBZBXB
6 simpr2 GCMndXBYBZBYB
7 simpr3 GCMndXBYBZBZB
8 1 2 cmncom GCMndYBZBY+˙Z=Z+˙Y
9 8 3adant3r1 GCMndXBYBZBY+˙Z=Z+˙Y
10 1 2 4 5 6 7 9 mnd32g GCMndXBYBZBX+˙Y+˙Z=X+˙Z+˙Y