| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablcom.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablcom.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 5 |  | simpr1 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | simpr2 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | simpr3 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 8 | 1 2 | cmncom | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑌  +  𝑍 )  =  ( 𝑍  +  𝑌 ) ) | 
						
							| 9 | 8 | 3adant3r1 | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑌  +  𝑍 )  =  ( 𝑍  +  𝑌 ) ) | 
						
							| 10 | 1 2 4 5 6 7 9 | mnd32g | ⊢ ( ( 𝐺  ∈  CMnd  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( ( 𝑋  +  𝑍 )  +  𝑌 ) ) |