Step |
Hyp |
Ref |
Expression |
1 |
|
ablcom.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablcom.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
simp1 |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐺 ∈ CMnd ) |
4 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐺 ∈ Mnd ) |
6 |
|
simp2l |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
|
simp2r |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
8 |
|
simp3l |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
9 |
|
simp3r |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑊 ∈ 𝐵 ) |
10 |
1 2
|
cmncom |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
11 |
3 7 8 10
|
syl3anc |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
12 |
1 2 5 6 7 8 9 11
|
mnd4g |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) ) |