Metamath Proof Explorer


Theorem cmn4

Description: Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablcom.b B=BaseG
ablcom.p +˙=+G
Assertion cmn4 GCMndXBYBZBWBX+˙Y+˙Z+˙W=X+˙Z+˙Y+˙W

Proof

Step Hyp Ref Expression
1 ablcom.b B=BaseG
2 ablcom.p +˙=+G
3 simp1 GCMndXBYBZBWBGCMnd
4 cmnmnd GCMndGMnd
5 3 4 syl GCMndXBYBZBWBGMnd
6 simp2l GCMndXBYBZBWBXB
7 simp2r GCMndXBYBZBWBYB
8 simp3l GCMndXBYBZBWBZB
9 simp3r GCMndXBYBZBWBWB
10 1 2 cmncom GCMndYBZBY+˙Z=Z+˙Y
11 3 7 8 10 syl3anc GCMndXBYBZBWBY+˙Z=Z+˙Y
12 1 2 5 6 7 8 9 11 mnd4g GCMndXBYBZBWBX+˙Y+˙Z+˙W=X+˙Z+˙Y+˙W