Metamath Proof Explorer


Theorem cmncom

Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses ablcom.b 𝐵 = ( Base ‘ 𝐺 )
ablcom.p + = ( +g𝐺 )
Assertion cmncom ( ( 𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ablcom.b 𝐵 = ( Base ‘ 𝐺 )
2 ablcom.p + = ( +g𝐺 )
3 1 2 iscmn ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
4 3 simprbi ( 𝐺 ∈ CMnd → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
5 rsp2 ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) → ( ( 𝑥𝐵𝑦𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
6 5 imp ( ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
7 4 6 sylan ( ( 𝐺 ∈ CMnd ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) )
8 7 caovcomg ( ( 𝐺 ∈ CMnd ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )
9 8 3impb ( ( 𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) )