Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
ablcom.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
Assertion | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcom.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | ablcom.p | ⊢ + = ( +g ‘ 𝐺 ) | |
3 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
4 | 1 2 | cmncom | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
5 | 3 4 | syl3an1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |