Metamath Proof Explorer


Theorem ablcom

Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011)

Ref Expression
Hypotheses ablcom.b
|- B = ( Base ` G )
ablcom.p
|- .+ = ( +g ` G )
Assertion ablcom
|- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) )

Proof

Step Hyp Ref Expression
1 ablcom.b
 |-  B = ( Base ` G )
2 ablcom.p
 |-  .+ = ( +g ` G )
3 ablcmn
 |-  ( G e. Abel -> G e. CMnd )
4 1 2 cmncom
 |-  ( ( G e. CMnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) )
5 3 4 syl3an1
 |-  ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) )