Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablcom.b | |- B = ( Base ` G ) |
|
ablcom.p | |- .+ = ( +g ` G ) |
||
Assertion | ablcom | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcom.b | |- B = ( Base ` G ) |
|
2 | ablcom.p | |- .+ = ( +g ` G ) |
|
3 | ablcmn | |- ( G e. Abel -> G e. CMnd ) |
|
4 | 1 2 | cmncom | |- ( ( G e. CMnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) |
5 | 3 4 | syl3an1 | |- ( ( G e. Abel /\ X e. B /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) |