Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsub2inv.b | |
|
ablsub2inv.m | |
||
ablsub2inv.n | |
||
ablsub2inv.g | |
||
ablsub2inv.x | |
||
ablsub2inv.y | |
||
Assertion | ablsub2inv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsub2inv.b | |
|
2 | ablsub2inv.m | |
|
3 | ablsub2inv.n | |
|
4 | ablsub2inv.g | |
|
5 | ablsub2inv.x | |
|
6 | ablsub2inv.y | |
|
7 | eqid | |
|
8 | ablgrp | |
|
9 | 4 8 | syl | |
10 | 1 3 | grpinvcl | |
11 | 9 5 10 | syl2anc | |
12 | 1 7 2 3 9 11 6 | grpsubinv | |
13 | 1 7 | ablcom | |
14 | 4 11 6 13 | syl3anc | |
15 | 1 3 | grpinvinv | |
16 | 9 6 15 | syl2anc | |
17 | 16 | oveq1d | |
18 | 14 17 | eqtr4d | |
19 | 1 3 | grpinvcl | |
20 | 9 6 19 | syl2anc | |
21 | 1 7 3 | grpinvadd | |
22 | 9 5 20 21 | syl3anc | |
23 | 18 22 | eqtr4d | |
24 | 1 7 3 2 | grpsubval | |
25 | 5 6 24 | syl2anc | |
26 | 25 | fveq2d | |
27 | 23 26 | eqtr4d | |
28 | 1 2 3 | grpinvsub | |
29 | 9 5 6 28 | syl3anc | |
30 | 12 27 29 | 3eqtrd | |