Metamath Proof Explorer


Theorem ablsub2inv

Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015)

Ref Expression
Hypotheses ablsub2inv.b B=BaseG
ablsub2inv.m -˙=-G
ablsub2inv.n N=invgG
ablsub2inv.g φGAbel
ablsub2inv.x φXB
ablsub2inv.y φYB
Assertion ablsub2inv φNX-˙NY=Y-˙X

Proof

Step Hyp Ref Expression
1 ablsub2inv.b B=BaseG
2 ablsub2inv.m -˙=-G
3 ablsub2inv.n N=invgG
4 ablsub2inv.g φGAbel
5 ablsub2inv.x φXB
6 ablsub2inv.y φYB
7 eqid +G=+G
8 ablgrp GAbelGGrp
9 4 8 syl φGGrp
10 1 3 grpinvcl GGrpXBNXB
11 9 5 10 syl2anc φNXB
12 1 7 2 3 9 11 6 grpsubinv φNX-˙NY=NX+GY
13 1 7 ablcom GAbelNXBYBNX+GY=Y+GNX
14 4 11 6 13 syl3anc φNX+GY=Y+GNX
15 1 3 grpinvinv GGrpYBNNY=Y
16 9 6 15 syl2anc φNNY=Y
17 16 oveq1d φNNY+GNX=Y+GNX
18 14 17 eqtr4d φNX+GY=NNY+GNX
19 1 3 grpinvcl GGrpYBNYB
20 9 6 19 syl2anc φNYB
21 1 7 3 grpinvadd GGrpXBNYBNX+GNY=NNY+GNX
22 9 5 20 21 syl3anc φNX+GNY=NNY+GNX
23 18 22 eqtr4d φNX+GY=NX+GNY
24 1 7 3 2 grpsubval XBYBX-˙Y=X+GNY
25 5 6 24 syl2anc φX-˙Y=X+GNY
26 25 fveq2d φNX-˙Y=NX+GNY
27 23 26 eqtr4d φNX+GY=NX-˙Y
28 1 2 3 grpinvsub GGrpXBYBNX-˙Y=Y-˙X
29 9 5 6 28 syl3anc φNX-˙Y=Y-˙X
30 12 27 29 3eqtrd φNX-˙NY=Y-˙X