Metamath Proof Explorer


Theorem grpinvsub

Description: Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014)

Ref Expression
Hypotheses grpsubcl.b B=BaseG
grpsubcl.m -˙=-G
grpinvsub.n N=invgG
Assertion grpinvsub GGrpXBYBNX-˙Y=Y-˙X

Proof

Step Hyp Ref Expression
1 grpsubcl.b B=BaseG
2 grpsubcl.m -˙=-G
3 grpinvsub.n N=invgG
4 1 3 grpinvcl GGrpYBNYB
5 4 3adant2 GGrpXBYBNYB
6 eqid +G=+G
7 1 6 3 grpinvadd GGrpXBNYBNX+GNY=NNY+GNX
8 5 7 syld3an3 GGrpXBYBNX+GNY=NNY+GNX
9 1 3 grpinvinv GGrpYBNNY=Y
10 9 3adant2 GGrpXBYBNNY=Y
11 10 oveq1d GGrpXBYBNNY+GNX=Y+GNX
12 8 11 eqtrd GGrpXBYBNX+GNY=Y+GNX
13 1 6 3 2 grpsubval XBYBX-˙Y=X+GNY
14 13 3adant1 GGrpXBYBX-˙Y=X+GNY
15 14 fveq2d GGrpXBYBNX-˙Y=NX+GNY
16 1 6 3 2 grpsubval YBXBY-˙X=Y+GNX
17 16 ancoms XBYBY-˙X=Y+GNX
18 17 3adant1 GGrpXBYBY-˙X=Y+GNX
19 12 15 18 3eqtr4d GGrpXBYBNX-˙Y=Y-˙X