| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ablsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
ablsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
1 2
|
ablcom |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 5 |
4
|
3adant3r3 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( ( 𝑌 + 𝑋 ) − 𝑍 ) ) |
| 7 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 9 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 10 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 11 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 12 |
1 2 3
|
grpaddsubass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) − 𝑍 ) = ( 𝑌 + ( 𝑋 − 𝑍 ) ) ) |
| 13 |
8 9 10 11 12
|
syl13anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) − 𝑍 ) = ( 𝑌 + ( 𝑋 − 𝑍 ) ) ) |
| 14 |
|
simpl |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) |
| 15 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) ∈ 𝐵 ) |
| 16 |
8 10 11 15
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − 𝑍 ) ∈ 𝐵 ) |
| 17 |
1 2
|
ablcom |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 − 𝑍 ) ∈ 𝐵 ) → ( 𝑌 + ( 𝑋 − 𝑍 ) ) = ( ( 𝑋 − 𝑍 ) + 𝑌 ) ) |
| 18 |
14 9 16 17
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 + ( 𝑋 − 𝑍 ) ) = ( ( 𝑋 − 𝑍 ) + 𝑌 ) ) |
| 19 |
6 13 18
|
3eqtrd |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑍 ) + 𝑌 ) ) |