Metamath Proof Explorer


Theorem lmodvsubcl

Description: Closure of vector subtraction. ( hvsubcl analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvsubcl.v V = Base W
lmodvsubcl.m - ˙ = - W
Assertion lmodvsubcl W LMod X V Y V X - ˙ Y V

Proof

Step Hyp Ref Expression
1 lmodvsubcl.v V = Base W
2 lmodvsubcl.m - ˙ = - W
3 lmodgrp W LMod W Grp
4 1 2 grpsubcl W Grp X V Y V X - ˙ Y V
5 3 4 syl3an1 W LMod X V Y V X - ˙ Y V