Metamath Proof Explorer


Theorem lmodcom

Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014)

Ref Expression
Hypotheses lmodcom.v V=BaseW
lmodcom.a +˙=+W
Assertion lmodcom WLModXVYVX+˙Y=Y+˙X

Proof

Step Hyp Ref Expression
1 lmodcom.v V=BaseW
2 lmodcom.a +˙=+W
3 simp1 WLModXVYVWLMod
4 eqid ScalarW=ScalarW
5 eqid BaseScalarW=BaseScalarW
6 eqid 1ScalarW=1ScalarW
7 4 5 6 lmod1cl WLMod1ScalarWBaseScalarW
8 3 7 syl WLModXVYV1ScalarWBaseScalarW
9 eqid +ScalarW=+ScalarW
10 4 5 9 lmodacl WLMod1ScalarWBaseScalarW1ScalarWBaseScalarW1ScalarW+ScalarW1ScalarWBaseScalarW
11 3 8 8 10 syl3anc WLModXVYV1ScalarW+ScalarW1ScalarWBaseScalarW
12 simp2 WLModXVYVXV
13 simp3 WLModXVYVYV
14 eqid W=W
15 1 2 4 14 5 lmodvsdi WLMod1ScalarW+ScalarW1ScalarWBaseScalarWXVYV1ScalarW+ScalarW1ScalarWWX+˙Y=1ScalarW+ScalarW1ScalarWWX+˙1ScalarW+ScalarW1ScalarWWY
16 3 11 12 13 15 syl13anc WLModXVYV1ScalarW+ScalarW1ScalarWWX+˙Y=1ScalarW+ScalarW1ScalarWWX+˙1ScalarW+ScalarW1ScalarWWY
17 1 2 lmodvacl WLModXVYVX+˙YV
18 1 2 4 14 5 9 lmodvsdir WLMod1ScalarWBaseScalarW1ScalarWBaseScalarWX+˙YV1ScalarW+ScalarW1ScalarWWX+˙Y=1ScalarWWX+˙Y+˙1ScalarWWX+˙Y
19 3 8 8 17 18 syl13anc WLModXVYV1ScalarW+ScalarW1ScalarWWX+˙Y=1ScalarWWX+˙Y+˙1ScalarWWX+˙Y
20 16 19 eqtr3d WLModXVYV1ScalarW+ScalarW1ScalarWWX+˙1ScalarW+ScalarW1ScalarWWY=1ScalarWWX+˙Y+˙1ScalarWWX+˙Y
21 1 2 4 14 5 9 lmodvsdir WLMod1ScalarWBaseScalarW1ScalarWBaseScalarWXV1ScalarW+ScalarW1ScalarWWX=1ScalarWWX+˙1ScalarWWX
22 3 8 8 12 21 syl13anc WLModXVYV1ScalarW+ScalarW1ScalarWWX=1ScalarWWX+˙1ScalarWWX
23 1 4 14 6 lmodvs1 WLModXV1ScalarWWX=X
24 3 12 23 syl2anc WLModXVYV1ScalarWWX=X
25 24 24 oveq12d WLModXVYV1ScalarWWX+˙1ScalarWWX=X+˙X
26 22 25 eqtrd WLModXVYV1ScalarW+ScalarW1ScalarWWX=X+˙X
27 1 2 4 14 5 9 lmodvsdir WLMod1ScalarWBaseScalarW1ScalarWBaseScalarWYV1ScalarW+ScalarW1ScalarWWY=1ScalarWWY+˙1ScalarWWY
28 3 8 8 13 27 syl13anc WLModXVYV1ScalarW+ScalarW1ScalarWWY=1ScalarWWY+˙1ScalarWWY
29 1 4 14 6 lmodvs1 WLModYV1ScalarWWY=Y
30 3 13 29 syl2anc WLModXVYV1ScalarWWY=Y
31 30 30 oveq12d WLModXVYV1ScalarWWY+˙1ScalarWWY=Y+˙Y
32 28 31 eqtrd WLModXVYV1ScalarW+ScalarW1ScalarWWY=Y+˙Y
33 26 32 oveq12d WLModXVYV1ScalarW+ScalarW1ScalarWWX+˙1ScalarW+ScalarW1ScalarWWY=X+˙X+˙Y+˙Y
34 1 4 14 6 lmodvs1 WLModX+˙YV1ScalarWWX+˙Y=X+˙Y
35 3 17 34 syl2anc WLModXVYV1ScalarWWX+˙Y=X+˙Y
36 35 35 oveq12d WLModXVYV1ScalarWWX+˙Y+˙1ScalarWWX+˙Y=X+˙Y+˙X+˙Y
37 20 33 36 3eqtr3d WLModXVYVX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y
38 1 2 lmodvacl WLModXVXVX+˙XV
39 3 12 12 38 syl3anc WLModXVYVX+˙XV
40 1 2 lmodass WLModX+˙XVYVYVX+˙X+˙Y+˙Y=X+˙X+˙Y+˙Y
41 3 39 13 13 40 syl13anc WLModXVYVX+˙X+˙Y+˙Y=X+˙X+˙Y+˙Y
42 1 2 lmodass WLModX+˙YVXVYVX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
43 3 17 12 13 42 syl13anc WLModXVYVX+˙Y+˙X+˙Y=X+˙Y+˙X+˙Y
44 37 41 43 3eqtr4d WLModXVYVX+˙X+˙Y+˙Y=X+˙Y+˙X+˙Y
45 lmodgrp WLModWGrp
46 3 45 syl WLModXVYVWGrp
47 1 2 lmodvacl WLModX+˙XVYVX+˙X+˙YV
48 3 39 13 47 syl3anc WLModXVYVX+˙X+˙YV
49 1 2 lmodvacl WLModX+˙YVXVX+˙Y+˙XV
50 3 17 12 49 syl3anc WLModXVYVX+˙Y+˙XV
51 1 2 grprcan WGrpX+˙X+˙YVX+˙Y+˙XVYVX+˙X+˙Y+˙Y=X+˙Y+˙X+˙YX+˙X+˙Y=X+˙Y+˙X
52 46 48 50 13 51 syl13anc WLModXVYVX+˙X+˙Y+˙Y=X+˙Y+˙X+˙YX+˙X+˙Y=X+˙Y+˙X
53 44 52 mpbid WLModXVYVX+˙X+˙Y=X+˙Y+˙X
54 1 2 lmodass WLModXVXVYVX+˙X+˙Y=X+˙X+˙Y
55 3 12 12 13 54 syl13anc WLModXVYVX+˙X+˙Y=X+˙X+˙Y
56 1 2 lmodass WLModXVYVXVX+˙Y+˙X=X+˙Y+˙X
57 3 12 13 12 56 syl13anc WLModXVYVX+˙Y+˙X=X+˙Y+˙X
58 53 55 57 3eqtr3d WLModXVYVX+˙X+˙Y=X+˙Y+˙X
59 1 2 lmodvacl WLModYVXVY+˙XV
60 59 3com23 WLModXVYVY+˙XV
61 1 2 lmodlcan WLModX+˙YVY+˙XVXVX+˙X+˙Y=X+˙Y+˙XX+˙Y=Y+˙X
62 3 17 60 12 61 syl13anc WLModXVYVX+˙X+˙Y=X+˙Y+˙XX+˙Y=Y+˙X
63 58 62 mpbid WLModXVYVX+˙Y=Y+˙X