Metamath Proof Explorer


Theorem lmodvs1

Description: Scalar product with ring unit. ( ax-hvmulid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvs1.v V = Base W
lmodvs1.f F = Scalar W
lmodvs1.s · ˙ = W
lmodvs1.u 1 ˙ = 1 F
Assertion lmodvs1 W LMod X V 1 ˙ · ˙ X = X

Proof

Step Hyp Ref Expression
1 lmodvs1.v V = Base W
2 lmodvs1.f F = Scalar W
3 lmodvs1.s · ˙ = W
4 lmodvs1.u 1 ˙ = 1 F
5 simpl W LMod X V W LMod
6 eqid Base F = Base F
7 2 6 4 lmod1cl W LMod 1 ˙ Base F
8 7 adantr W LMod X V 1 ˙ Base F
9 simpr W LMod X V X V
10 eqid + W = + W
11 eqid + F = + F
12 eqid F = F
13 1 10 3 2 6 11 12 4 lmodlema W LMod 1 ˙ Base F 1 ˙ Base F X V X V 1 ˙ · ˙ X V 1 ˙ · ˙ X + W X = 1 ˙ · ˙ X + W 1 ˙ · ˙ X 1 ˙ + F 1 ˙ · ˙ X = 1 ˙ · ˙ X + W 1 ˙ · ˙ X 1 ˙ F 1 ˙ · ˙ X = 1 ˙ · ˙ 1 ˙ · ˙ X 1 ˙ · ˙ X = X
14 13 simprrd W LMod 1 ˙ Base F 1 ˙ Base F X V X V 1 ˙ · ˙ X = X
15 5 8 8 9 9 14 syl122anc W LMod X V 1 ˙ · ˙ X = X