Metamath Proof Explorer


Theorem lmodvs1

Description: Scalar product with the ring unity. ( ax-hvmulid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvs1.v V=BaseW
lmodvs1.f F=ScalarW
lmodvs1.s ·˙=W
lmodvs1.u 1˙=1F
Assertion lmodvs1 WLModXV1˙·˙X=X

Proof

Step Hyp Ref Expression
1 lmodvs1.v V=BaseW
2 lmodvs1.f F=ScalarW
3 lmodvs1.s ·˙=W
4 lmodvs1.u 1˙=1F
5 simpl WLModXVWLMod
6 eqid BaseF=BaseF
7 2 6 4 lmod1cl WLMod1˙BaseF
8 7 adantr WLModXV1˙BaseF
9 simpr WLModXVXV
10 eqid +W=+W
11 eqid +F=+F
12 eqid F=F
13 1 10 3 2 6 11 12 4 lmodlema WLMod1˙BaseF1˙BaseFXVXV1˙·˙XV1˙·˙X+WX=1˙·˙X+W1˙·˙X1˙+F1˙·˙X=1˙·˙X+W1˙·˙X1˙F1˙·˙X=1˙·˙1˙·˙X1˙·˙X=X
14 13 simprrd WLMod1˙BaseF1˙BaseFXVXV1˙·˙X=X
15 5 8 8 9 9 14 syl122anc WLModXV1˙·˙X=X