Metamath Proof Explorer


Theorem lmod0vcl

Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses 0vcl.v V = Base W
0vcl.z 0 ˙ = 0 W
Assertion lmod0vcl W LMod 0 ˙ V

Proof

Step Hyp Ref Expression
1 0vcl.v V = Base W
2 0vcl.z 0 ˙ = 0 W
3 lmodgrp W LMod W Grp
4 1 2 grpidcl W Grp 0 ˙ V
5 3 4 syl W LMod 0 ˙ V