Metamath Proof Explorer
Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
0vcl.v |
|
|
|
0vcl.z |
|
|
Assertion |
lmod0vcl |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0vcl.v |
|
| 2 |
|
0vcl.z |
|
| 3 |
|
lmodgrp |
|
| 4 |
1 2
|
grpidcl |
|
| 5 |
3 4
|
syl |
|