Metamath Proof Explorer


Theorem lmod0vcl

Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses 0vcl.v V=BaseW
0vcl.z 0˙=0W
Assertion lmod0vcl WLMod0˙V

Proof

Step Hyp Ref Expression
1 0vcl.v V=BaseW
2 0vcl.z 0˙=0W
3 lmodgrp WLModWGrp
4 1 2 grpidcl WGrp0˙V
5 3 4 syl WLMod0˙V