Metamath Proof Explorer
Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
0vcl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
0vcl.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
|
Assertion |
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝑉 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
0vcl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
0vcl.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
4 |
1 2
|
grpidcl |
⊢ ( 𝑊 ∈ Grp → 0 ∈ 𝑉 ) |
5 |
3 4
|
syl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝑉 ) |