Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0vcl.v | |- V = ( Base ` W ) |
|
0vcl.z | |- .0. = ( 0g ` W ) |
||
Assertion | lmod0vcl | |- ( W e. LMod -> .0. e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0vcl.v | |- V = ( Base ` W ) |
|
2 | 0vcl.z | |- .0. = ( 0g ` W ) |
|
3 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
4 | 1 2 | grpidcl | |- ( W e. Grp -> .0. e. V ) |
5 | 3 4 | syl | |- ( W e. LMod -> .0. e. V ) |