Metamath Proof Explorer


Theorem lmod0vlid

Description: Left identity law for the zero vector. ( hvaddlid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses 0vlid.v V=BaseW
0vlid.a +˙=+W
0vlid.z 0˙=0W
Assertion lmod0vlid WLModXV0˙+˙X=X

Proof

Step Hyp Ref Expression
1 0vlid.v V=BaseW
2 0vlid.a +˙=+W
3 0vlid.z 0˙=0W
4 lmodgrp WLModWGrp
5 1 2 3 grplid WGrpXV0˙+˙X=X
6 4 5 sylan WLModXV0˙+˙X=X