Metamath Proof Explorer
		
		
		
		Description:  Right identity law for the zero vector.  ( ax-hvaddid analog.)
       (Contributed by NM, 10-Jan-2014)  (Revised by Mario Carneiro, 19-Jun-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 0vlid.v |  | 
					
						|  |  | 0vlid.a |  | 
					
						|  |  | 0vlid.z |  | 
				
					|  | Assertion | lmod0vrid |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0vlid.v |  | 
						
							| 2 |  | 0vlid.a |  | 
						
							| 3 |  | 0vlid.z |  | 
						
							| 4 |  | lmodgrp |  | 
						
							| 5 | 1 2 3 | grprid |  | 
						
							| 6 | 4 5 | sylan |  |