Metamath Proof Explorer
Description: Right identity law for the zero vector. ( ax-hvaddid analog.)
(Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
0vlid.v |
|
|
|
0vlid.a |
|
|
|
0vlid.z |
|
|
Assertion |
lmod0vrid |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
0vlid.v |
|
2 |
|
0vlid.a |
|
3 |
|
0vlid.z |
|
4 |
|
lmodgrp |
|
5 |
1 2 3
|
grprid |
|
6 |
4 5
|
sylan |
|