Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Definition and basic properties
lmod0vid
Metamath Proof Explorer
Description: Identity equivalent to the value of the zero vector. Provides a
convenient way to compute the value. (Contributed by NM , 9-Mar-2014)
(Revised by Mario Carneiro , 19-Jun-2014)
Ref
Expression
Hypotheses
0vlid.v
⊢ V = Base W
0vlid.a
⊢ + ˙ = + W
0vlid.z
⊢ 0 ˙ = 0 W
Assertion
lmod0vid
⊢ W ∈ LMod ∧ X ∈ V → X + ˙ X = X ↔ 0 ˙ = X
Proof
Step
Hyp
Ref
Expression
1
0vlid.v
⊢ V = Base W
2
0vlid.a
⊢ + ˙ = + W
3
0vlid.z
⊢ 0 ˙ = 0 W
4
lmodgrp
⊢ W ∈ LMod → W ∈ Grp
5
1 2 3
grpid
⊢ W ∈ Grp ∧ X ∈ V → X + ˙ X = X ↔ 0 ˙ = X
6
4 5
sylan
⊢ W ∈ LMod ∧ X ∈ V → X + ˙ X = X ↔ 0 ˙ = X