Metamath Proof Explorer


Theorem lmod0vs

Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( ax-hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod0vs.v V = Base W
lmod0vs.f F = Scalar W
lmod0vs.s · ˙ = W
lmod0vs.o O = 0 F
lmod0vs.z 0 ˙ = 0 W
Assertion lmod0vs W LMod X V O · ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 lmod0vs.v V = Base W
2 lmod0vs.f F = Scalar W
3 lmod0vs.s · ˙ = W
4 lmod0vs.o O = 0 F
5 lmod0vs.z 0 ˙ = 0 W
6 simpl W LMod X V W LMod
7 2 lmodring W LMod F Ring
8 7 adantr W LMod X V F Ring
9 eqid Base F = Base F
10 9 4 ring0cl F Ring O Base F
11 8 10 syl W LMod X V O Base F
12 simpr W LMod X V X V
13 eqid + W = + W
14 eqid + F = + F
15 1 13 2 3 9 14 lmodvsdir W LMod O Base F O Base F X V O + F O · ˙ X = O · ˙ X + W O · ˙ X
16 6 11 11 12 15 syl13anc W LMod X V O + F O · ˙ X = O · ˙ X + W O · ˙ X
17 ringgrp F Ring F Grp
18 8 17 syl W LMod X V F Grp
19 9 14 4 grplid F Grp O Base F O + F O = O
20 18 11 19 syl2anc W LMod X V O + F O = O
21 20 oveq1d W LMod X V O + F O · ˙ X = O · ˙ X
22 16 21 eqtr3d W LMod X V O · ˙ X + W O · ˙ X = O · ˙ X
23 1 2 3 9 lmodvscl W LMod O Base F X V O · ˙ X V
24 6 11 12 23 syl3anc W LMod X V O · ˙ X V
25 1 13 5 lmod0vid W LMod O · ˙ X V O · ˙ X + W O · ˙ X = O · ˙ X 0 ˙ = O · ˙ X
26 24 25 syldan W LMod X V O · ˙ X + W O · ˙ X = O · ˙ X 0 ˙ = O · ˙ X
27 22 26 mpbid W LMod X V 0 ˙ = O · ˙ X
28 27 eqcomd W LMod X V O · ˙ X = 0 ˙