Metamath Proof Explorer
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypothesis |
lmodring.1 |
|
|
Assertion |
lmodring |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmodring.1 |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
2 3 4 1 5 6 7 8
|
islmod |
|
10 |
9
|
simp2bi |
|