Metamath Proof Explorer


Theorem lmodring

Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lmodring.1 F = Scalar W
Assertion lmodring W LMod F Ring

Proof

Step Hyp Ref Expression
1 lmodring.1 F = Scalar W
2 eqid Base W = Base W
3 eqid + W = + W
4 eqid W = W
5 eqid Base F = Base F
6 eqid + F = + F
7 eqid F = F
8 eqid 1 F = 1 F
9 2 3 4 1 5 6 7 8 islmod W LMod W Grp F Ring q Base F r Base F x Base W w Base W r W w Base W r W w + W x = r W w + W r W x q + F r W w = q W w + W r W w q F r W w = q W r W w 1 F W w = w
10 9 simp2bi W LMod F Ring