Step |
Hyp |
Ref |
Expression |
1 |
|
lmod0vs.v |
|- V = ( Base ` W ) |
2 |
|
lmod0vs.f |
|- F = ( Scalar ` W ) |
3 |
|
lmod0vs.s |
|- .x. = ( .s ` W ) |
4 |
|
lmod0vs.o |
|- O = ( 0g ` F ) |
5 |
|
lmod0vs.z |
|- .0. = ( 0g ` W ) |
6 |
|
simpl |
|- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
7 |
2
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
8 |
7
|
adantr |
|- ( ( W e. LMod /\ X e. V ) -> F e. Ring ) |
9 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
10 |
9 4
|
ring0cl |
|- ( F e. Ring -> O e. ( Base ` F ) ) |
11 |
8 10
|
syl |
|- ( ( W e. LMod /\ X e. V ) -> O e. ( Base ` F ) ) |
12 |
|
simpr |
|- ( ( W e. LMod /\ X e. V ) -> X e. V ) |
13 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
14 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
15 |
1 13 2 3 9 14
|
lmodvsdir |
|- ( ( W e. LMod /\ ( O e. ( Base ` F ) /\ O e. ( Base ` F ) /\ X e. V ) ) -> ( ( O ( +g ` F ) O ) .x. X ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) ) |
16 |
6 11 11 12 15
|
syl13anc |
|- ( ( W e. LMod /\ X e. V ) -> ( ( O ( +g ` F ) O ) .x. X ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) ) |
17 |
|
ringgrp |
|- ( F e. Ring -> F e. Grp ) |
18 |
8 17
|
syl |
|- ( ( W e. LMod /\ X e. V ) -> F e. Grp ) |
19 |
9 14 4
|
grplid |
|- ( ( F e. Grp /\ O e. ( Base ` F ) ) -> ( O ( +g ` F ) O ) = O ) |
20 |
18 11 19
|
syl2anc |
|- ( ( W e. LMod /\ X e. V ) -> ( O ( +g ` F ) O ) = O ) |
21 |
20
|
oveq1d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( O ( +g ` F ) O ) .x. X ) = ( O .x. X ) ) |
22 |
16 21
|
eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) = ( O .x. X ) ) |
23 |
1 2 3 9
|
lmodvscl |
|- ( ( W e. LMod /\ O e. ( Base ` F ) /\ X e. V ) -> ( O .x. X ) e. V ) |
24 |
6 11 12 23
|
syl3anc |
|- ( ( W e. LMod /\ X e. V ) -> ( O .x. X ) e. V ) |
25 |
1 13 5
|
lmod0vid |
|- ( ( W e. LMod /\ ( O .x. X ) e. V ) -> ( ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) = ( O .x. X ) <-> .0. = ( O .x. X ) ) ) |
26 |
24 25
|
syldan |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) = ( O .x. X ) <-> .0. = ( O .x. X ) ) ) |
27 |
22 26
|
mpbid |
|- ( ( W e. LMod /\ X e. V ) -> .0. = ( O .x. X ) ) |
28 |
27
|
eqcomd |
|- ( ( W e. LMod /\ X e. V ) -> ( O .x. X ) = .0. ) |