Step |
Hyp |
Ref |
Expression |
1 |
|
lmod0vs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmod0vs.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
lmod0vs.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
lmod0vs.o |
⊢ 𝑂 = ( 0g ‘ 𝐹 ) |
5 |
|
lmod0vs.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
6 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
7 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
8 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ Ring ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
10 |
9 4
|
ring0cl |
⊢ ( 𝐹 ∈ Ring → 𝑂 ∈ ( Base ‘ 𝐹 ) ) |
11 |
8 10
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑂 ∈ ( Base ‘ 𝐹 ) ) |
12 |
|
simpr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
15 |
1 13 2 3 9 14
|
lmodvsdir |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑂 ∈ ( Base ‘ 𝐹 ) ∧ 𝑂 ∈ ( Base ‘ 𝐹 ) ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) ) |
16 |
6 11 11 12 15
|
syl13anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) ) |
17 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
18 |
8 17
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ Grp ) |
19 |
9 14 4
|
grplid |
⊢ ( ( 𝐹 ∈ Grp ∧ 𝑂 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) = 𝑂 ) |
20 |
18 11 19
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) = 𝑂 ) |
21 |
20
|
oveq1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( 𝑂 · 𝑋 ) ) |
22 |
16 21
|
eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) = ( 𝑂 · 𝑋 ) ) |
23 |
1 2 3 9
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑂 ∈ ( Base ‘ 𝐹 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) ∈ 𝑉 ) |
24 |
6 11 12 23
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) ∈ 𝑉 ) |
25 |
1 13 5
|
lmod0vid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑂 · 𝑋 ) ∈ 𝑉 ) → ( ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) = ( 𝑂 · 𝑋 ) ↔ 0 = ( 𝑂 · 𝑋 ) ) ) |
26 |
24 25
|
syldan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) = ( 𝑂 · 𝑋 ) ↔ 0 = ( 𝑂 · 𝑋 ) ) ) |
27 |
22 26
|
mpbid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 0 = ( 𝑂 · 𝑋 ) ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) = 0 ) |