| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvs0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lmodvs0.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
lmodvs0.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 4 |
|
lmodvs0.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 5 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 6 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 8 |
3 6 7
|
ringrz |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
| 9 |
5 8
|
sylan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
| 10 |
9
|
oveq1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) · 0 ) = ( ( 0g ‘ 𝐹 ) · 0 ) ) |
| 11 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
| 12 |
|
simpr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → 𝐹 ∈ Ring ) |
| 14 |
3 7
|
ring0cl |
⊢ ( 𝐹 ∈ Ring → ( 0g ‘ 𝐹 ) ∈ 𝐾 ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 0g ‘ 𝐹 ) ∈ 𝐾 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 17 |
16 4
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ ( Base ‘ 𝑊 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → 0 ∈ ( Base ‘ 𝑊 ) ) |
| 19 |
16 1 2 3 6
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝐾 ∧ ( 0g ‘ 𝐹 ) ∈ 𝐾 ∧ 0 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) · 0 ) = ( 𝑋 · ( ( 0g ‘ 𝐹 ) · 0 ) ) ) |
| 20 |
11 12 15 18 19
|
syl13anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) · 0 ) = ( 𝑋 · ( ( 0g ‘ 𝐹 ) · 0 ) ) ) |
| 21 |
16 1 2 7 4
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 0 ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g ‘ 𝐹 ) · 0 ) = 0 ) |
| 22 |
18 21
|
syldan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( ( 0g ‘ 𝐹 ) · 0 ) = 0 ) |
| 23 |
22
|
oveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 · ( ( 0g ‘ 𝐹 ) · 0 ) ) = ( 𝑋 · 0 ) ) |
| 24 |
20 23
|
eqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) · 0 ) = ( 𝑋 · 0 ) ) |
| 25 |
10 24 22
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 · 0 ) = 0 ) |