| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvsmmulgdi.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lmodvsmmulgdi.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lmodvsmmulgdi.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
lmodvsmmulgdi.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
lmodvsmmulgdi.p |
⊢ ↑ = ( .g ‘ 𝑊 ) |
| 6 |
|
lmodvsmmulgdi.e |
⊢ 𝐸 = ( .g ‘ 𝐹 ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( 0 ↑ ( 𝐶 · 𝑋 ) ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 𝐸 𝐶 ) = ( 0 𝐸 𝐶 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) = ( ( 0 𝐸 𝐶 ) · 𝑋 ) ) |
| 10 |
7 9
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ↔ ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 0 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ) ↔ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 0 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 12 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐸 𝐶 ) = ( 𝑦 𝐸 𝐶 ) ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) |
| 15 |
12 14
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ↔ ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ) ↔ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 𝐸 𝐶 ) = ( ( 𝑦 + 1 ) 𝐸 𝐶 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 20 |
17 19
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ↔ ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ) ↔ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 𝐸 𝐶 ) = ( 𝑁 𝐸 𝐶 ) ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) |
| 25 |
22 24
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ↔ ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 26 |
25
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑥 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑥 𝐸 𝐶 ) · 𝑋 ) ) ↔ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → 𝑊 ∈ LMod ) |
| 28 |
|
simpr |
⊢ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → 𝑋 ∈ 𝑉 ) |
| 30 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 31 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 32 |
1 2 3 30 31
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 33 |
27 29 32
|
syl2anc |
⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 34 |
|
simpl |
⊢ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝐶 ∈ 𝐾 ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → 𝐶 ∈ 𝐾 ) |
| 36 |
4 30 6
|
mulg0 |
⊢ ( 𝐶 ∈ 𝐾 → ( 0 𝐸 𝐶 ) = ( 0g ‘ 𝐹 ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 0 𝐸 𝐶 ) = ( 0g ‘ 𝐹 ) ) |
| 38 |
37
|
oveq1d |
⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 0 𝐸 𝐶 ) · 𝑋 ) = ( ( 0g ‘ 𝐹 ) · 𝑋 ) ) |
| 39 |
1 2 3 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐶 · 𝑋 ) ∈ 𝑉 ) |
| 40 |
27 35 29 39
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝐶 · 𝑋 ) ∈ 𝑉 ) |
| 41 |
1 31 5
|
mulg0 |
⊢ ( ( 𝐶 · 𝑋 ) ∈ 𝑉 → ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( 0g ‘ 𝑊 ) ) |
| 42 |
40 41
|
syl |
⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( 0g ‘ 𝑊 ) ) |
| 43 |
33 38 42
|
3eqtr4rd |
⊢ ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 0 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 0 𝐸 𝐶 ) · 𝑋 ) ) |
| 44 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 45 |
44
|
grpmndd |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Mnd ) |
| 46 |
45
|
ad2antll |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝑊 ∈ Mnd ) |
| 47 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝑦 ∈ ℕ0 ) |
| 48 |
40
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( 𝐶 · 𝑋 ) ∈ 𝑉 ) |
| 49 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 50 |
1 5 49
|
mulgnn0p1 |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝐶 · 𝑋 ) ∈ 𝑉 ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 51 |
46 47 48 50
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) ∧ ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 53 |
|
oveq1 |
⊢ ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) → ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 54 |
27
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝑊 ∈ LMod ) |
| 55 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 56 |
|
ringmnd |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Mnd ) |
| 57 |
55 56
|
syl |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Mnd ) |
| 58 |
57
|
ad2antll |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝐹 ∈ Mnd ) |
| 59 |
|
simprll |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝐶 ∈ 𝐾 ) |
| 60 |
4 6 58 47 59
|
mulgnn0cld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( 𝑦 𝐸 𝐶 ) ∈ 𝐾 ) |
| 61 |
29
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → 𝑋 ∈ 𝑉 ) |
| 62 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
| 63 |
1 49 2 3 4 62
|
lmodvsdir |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 𝐸 𝐶 ) ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) · 𝑋 ) = ( ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 64 |
54 60 59 61 63
|
syl13anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) · 𝑋 ) = ( ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) ) |
| 65 |
4 6 62
|
mulgnn0p1 |
⊢ ( ( 𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ 𝐾 ) → ( ( 𝑦 + 1 ) 𝐸 𝐶 ) = ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) ) |
| 66 |
58 47 59 65
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( 𝑦 + 1 ) 𝐸 𝐶 ) = ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) ) |
| 67 |
66
|
eqcomd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) = ( ( 𝑦 + 1 ) 𝐸 𝐶 ) ) |
| 68 |
67
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) · 𝑋 ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 69 |
64 68
|
eqtr3d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) → ( ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 70 |
53 69
|
sylan9eqr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) ∧ ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) → ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 71 |
52 70
|
eqtrd |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) ) ∧ ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) |
| 72 |
71
|
exp31 |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 73 |
72
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑦 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑦 𝐸 𝐶 ) · 𝑋 ) ) → ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( ( 𝑦 + 1 ) ↑ ( 𝐶 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐸 𝐶 ) · 𝑋 ) ) ) ) |
| 74 |
11 16 21 26 43 73
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ LMod ) → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 75 |
74
|
exp4c |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐶 ∈ 𝐾 → ( 𝑋 ∈ 𝑉 → ( 𝑊 ∈ LMod → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) ) ) |
| 76 |
75
|
3imp21 |
⊢ ( ( 𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ∈ LMod → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) ) |
| 77 |
76
|
impcom |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑁 ↑ ( 𝐶 · 𝑋 ) ) = ( ( 𝑁 𝐸 𝐶 ) · 𝑋 ) ) |