| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodfopne.t | ⊢  ·   =  (  ·sf  ‘ 𝑊 ) | 
						
							| 2 |  | lmodfopne.a | ⊢  +   =  ( +𝑓 ‘ 𝑊 ) | 
						
							| 3 |  | lmodfopne.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | lmodfopne.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | lmodfopne.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 6 | 3 4 5 1 | lmodscaf | ⊢ ( 𝑊  ∈  LMod  →   ·  : ( 𝐾  ×  𝑉 ) ⟶ 𝑉 ) | 
						
							| 7 | 6 | ffnd | ⊢ ( 𝑊  ∈  LMod  →   ·   Fn  ( 𝐾  ×  𝑉 ) ) | 
						
							| 8 | 3 2 | plusffn | ⊢  +   Fn  ( 𝑉  ×  𝑉 ) | 
						
							| 9 |  | fneq1 | ⊢ (  +   =   ·   →  (  +   Fn  ( 𝑉  ×  𝑉 )  ↔   ·   Fn  ( 𝑉  ×  𝑉 ) ) ) | 
						
							| 10 |  | fndmu | ⊢ ( (  ·   Fn  ( 𝑉  ×  𝑉 )  ∧   ·   Fn  ( 𝐾  ×  𝑉 ) )  →  ( 𝑉  ×  𝑉 )  =  ( 𝐾  ×  𝑉 ) ) | 
						
							| 11 | 10 | ex | ⊢ (  ·   Fn  ( 𝑉  ×  𝑉 )  →  (  ·   Fn  ( 𝐾  ×  𝑉 )  →  ( 𝑉  ×  𝑉 )  =  ( 𝐾  ×  𝑉 ) ) ) | 
						
							| 12 | 9 11 | biimtrdi | ⊢ (  +   =   ·   →  (  +   Fn  ( 𝑉  ×  𝑉 )  →  (  ·   Fn  ( 𝐾  ×  𝑉 )  →  ( 𝑉  ×  𝑉 )  =  ( 𝐾  ×  𝑉 ) ) ) ) | 
						
							| 13 | 12 | com13 | ⊢ (  ·   Fn  ( 𝐾  ×  𝑉 )  →  (  +   Fn  ( 𝑉  ×  𝑉 )  →  (  +   =   ·   →  ( 𝑉  ×  𝑉 )  =  ( 𝐾  ×  𝑉 ) ) ) ) | 
						
							| 14 | 13 | impcom | ⊢ ( (  +   Fn  ( 𝑉  ×  𝑉 )  ∧   ·   Fn  ( 𝐾  ×  𝑉 ) )  →  (  +   =   ·   →  ( 𝑉  ×  𝑉 )  =  ( 𝐾  ×  𝑉 ) ) ) | 
						
							| 15 | 3 | lmodbn0 | ⊢ ( 𝑊  ∈  LMod  →  𝑉  ≠  ∅ ) | 
						
							| 16 |  | xp11 | ⊢ ( ( 𝑉  ≠  ∅  ∧  𝑉  ≠  ∅ )  →  ( ( 𝑉  ×  𝑉 )  =  ( 𝐾  ×  𝑉 )  ↔  ( 𝑉  =  𝐾  ∧  𝑉  =  𝑉 ) ) ) | 
						
							| 17 | 15 15 16 | syl2anc | ⊢ ( 𝑊  ∈  LMod  →  ( ( 𝑉  ×  𝑉 )  =  ( 𝐾  ×  𝑉 )  ↔  ( 𝑉  =  𝐾  ∧  𝑉  =  𝑉 ) ) ) | 
						
							| 18 | 17 | simprbda | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑉  ×  𝑉 )  =  ( 𝐾  ×  𝑉 ) )  →  𝑉  =  𝐾 ) | 
						
							| 19 | 18 | expcom | ⊢ ( ( 𝑉  ×  𝑉 )  =  ( 𝐾  ×  𝑉 )  →  ( 𝑊  ∈  LMod  →  𝑉  =  𝐾 ) ) | 
						
							| 20 | 14 19 | syl6 | ⊢ ( (  +   Fn  ( 𝑉  ×  𝑉 )  ∧   ·   Fn  ( 𝐾  ×  𝑉 ) )  →  (  +   =   ·   →  ( 𝑊  ∈  LMod  →  𝑉  =  𝐾 ) ) ) | 
						
							| 21 | 20 | com23 | ⊢ ( (  +   Fn  ( 𝑉  ×  𝑉 )  ∧   ·   Fn  ( 𝐾  ×  𝑉 ) )  →  ( 𝑊  ∈  LMod  →  (  +   =   ·   →  𝑉  =  𝐾 ) ) ) | 
						
							| 22 | 21 | ex | ⊢ (  +   Fn  ( 𝑉  ×  𝑉 )  →  (  ·   Fn  ( 𝐾  ×  𝑉 )  →  ( 𝑊  ∈  LMod  →  (  +   =   ·   →  𝑉  =  𝐾 ) ) ) ) | 
						
							| 23 | 22 | com23 | ⊢ (  +   Fn  ( 𝑉  ×  𝑉 )  →  ( 𝑊  ∈  LMod  →  (  ·   Fn  ( 𝐾  ×  𝑉 )  →  (  +   =   ·   →  𝑉  =  𝐾 ) ) ) ) | 
						
							| 24 | 8 23 | ax-mp | ⊢ ( 𝑊  ∈  LMod  →  (  ·   Fn  ( 𝐾  ×  𝑉 )  →  (  +   =   ·   →  𝑉  =  𝐾 ) ) ) | 
						
							| 25 | 7 24 | mpd | ⊢ ( 𝑊  ∈  LMod  →  (  +   =   ·   →  𝑉  =  𝐾 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →  𝑉  =  𝐾 ) |