| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodfopne.t | ⊢  ·   =  (  ·sf  ‘ 𝑊 ) | 
						
							| 2 |  | lmodfopne.a | ⊢  +   =  ( +𝑓 ‘ 𝑊 ) | 
						
							| 3 |  | lmodfopne.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | lmodfopne.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | lmodfopne.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | lmodfopne.0 | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 7 |  | lmodfopne.1 | ⊢  1   =  ( 1r ‘ 𝑆 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | lmodfopnelem2 | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) ) | 
						
							| 9 |  | simpl | ⊢ ( (  0   ∈  𝑉  ∧   1   ∈  𝑉 )  →   0   ∈  𝑉 ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 11 | 3 10 | lmod0vcl | ⊢ ( 𝑊  ∈  LMod  →  ( 0g ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →  ( 0g ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 14 | 3 13 2 | plusfval | ⊢ ( (  0   ∈  𝑉  ∧  ( 0g ‘ 𝑊 )  ∈  𝑉 )  →  (  0   +  ( 0g ‘ 𝑊 ) )  =  (  0  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( (  0   ∈  𝑉  ∧  ( 0g ‘ 𝑊 )  ∈  𝑉 )  →  (  0  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  (  0   +  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 16 | 9 12 15 | syl2anr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  0  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  (  0   +  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 17 |  | oveq | ⊢ (  +   =   ·   →  (  0   +  ( 0g ‘ 𝑊 ) )  =  (  0   ·  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 18 | 17 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  0   +  ( 0g ‘ 𝑊 ) )  =  (  0   ·  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 19 | 16 18 | eqtrd | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  0  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  (  0   ·  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 20 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →  𝑊  ∈  Grp ) | 
						
							| 22 | 3 13 10 | grprid | ⊢ ( ( 𝑊  ∈  Grp  ∧   0   ∈  𝑉 )  →  (  0  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =   0  ) | 
						
							| 23 | 21 9 22 | syl2an | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  0  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =   0  ) | 
						
							| 24 | 4 5 6 | lmod0cl | ⊢ ( 𝑊  ∈  LMod  →   0   ∈  𝐾 ) | 
						
							| 25 | 24 11 | jca | ⊢ ( 𝑊  ∈  LMod  →  (  0   ∈  𝐾  ∧  ( 0g ‘ 𝑊 )  ∈  𝑉 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →  (  0   ∈  𝐾  ∧  ( 0g ‘ 𝑊 )  ∈  𝑉 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  0   ∈  𝐾  ∧  ( 0g ‘ 𝑊 )  ∈  𝑉 ) ) | 
						
							| 28 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 29 | 3 4 5 1 28 | scafval | ⊢ ( (  0   ∈  𝐾  ∧  ( 0g ‘ 𝑊 )  ∈  𝑉 )  →  (  0   ·  ( 0g ‘ 𝑊 ) )  =  (  0  (  ·𝑠  ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) | 
						
							| 30 | 27 29 | syl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  0   ·  ( 0g ‘ 𝑊 ) )  =  (  0  (  ·𝑠  ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) | 
						
							| 31 | 24 | ancli | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑊  ∈  LMod  ∧   0   ∈  𝐾 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →  ( 𝑊  ∈  LMod  ∧   0   ∈  𝐾 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  ( 𝑊  ∈  LMod  ∧   0   ∈  𝐾 ) ) | 
						
							| 34 | 4 28 5 10 | lmodvs0 | ⊢ ( ( 𝑊  ∈  LMod  ∧   0   ∈  𝐾 )  →  (  0  (  ·𝑠  ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  0  (  ·𝑠  ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 36 |  | simpr | ⊢ ( (  0   ∈  𝑉  ∧   1   ∈  𝑉 )  →   1   ∈  𝑉 ) | 
						
							| 37 | 3 13 10 | grprid | ⊢ ( ( 𝑊  ∈  Grp  ∧   1   ∈  𝑉 )  →  (  1  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =   1  ) | 
						
							| 38 | 21 36 37 | syl2an | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  1  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =   1  ) | 
						
							| 39 | 4 5 7 | lmod1cl | ⊢ ( 𝑊  ∈  LMod  →   1   ∈  𝐾 ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →   1   ∈  𝐾 ) | 
						
							| 41 | 3 4 5 1 28 | scafval | ⊢ ( (  1   ∈  𝐾  ∧   1   ∈  𝑉 )  →  (  1   ·   1  )  =  (  1  (  ·𝑠  ‘ 𝑊 )  1  ) ) | 
						
							| 42 | 40 36 41 | syl2an | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  1   ·   1  )  =  (  1  (  ·𝑠  ‘ 𝑊 )  1  ) ) | 
						
							| 43 | 3 4 28 7 | lmodvs1 | ⊢ ( ( 𝑊  ∈  LMod  ∧   1   ∈  𝑉 )  →  (  1  (  ·𝑠  ‘ 𝑊 )  1  )  =   1  ) | 
						
							| 44 | 43 | ad2ant2rl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  1  (  ·𝑠  ‘ 𝑊 )  1  )  =   1  ) | 
						
							| 45 | 42 44 | eqtrd | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  1   ·   1  )  =   1  ) | 
						
							| 46 |  | oveq | ⊢ (  +   =   ·   →  (  1   +   1  )  =  (  1   ·   1  ) ) | 
						
							| 47 | 46 | eqcomd | ⊢ (  +   =   ·   →  (  1   ·   1  )  =  (  1   +   1  ) ) | 
						
							| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  1   ·   1  )  =  (  1   +   1  ) ) | 
						
							| 49 | 36 36 | jca | ⊢ ( (  0   ∈  𝑉  ∧   1   ∈  𝑉 )  →  (  1   ∈  𝑉  ∧   1   ∈  𝑉 ) ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  1   ∈  𝑉  ∧   1   ∈  𝑉 ) ) | 
						
							| 51 | 3 13 2 | plusfval | ⊢ ( (  1   ∈  𝑉  ∧   1   ∈  𝑉 )  →  (  1   +   1  )  =  (  1  ( +g ‘ 𝑊 )  1  ) ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  1   +   1  )  =  (  1  ( +g ‘ 𝑊 )  1  ) ) | 
						
							| 53 | 48 52 | eqtrd | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  1   ·   1  )  =  (  1  ( +g ‘ 𝑊 )  1  ) ) | 
						
							| 54 | 38 45 53 | 3eqtr2d | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  1  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  (  1  ( +g ‘ 𝑊 )  1  ) ) | 
						
							| 55 | 21 | adantr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  𝑊  ∈  Grp ) | 
						
							| 56 | 12 | adantr | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  ( 0g ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 57 | 36 | adantl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →   1   ∈  𝑉 ) | 
						
							| 58 | 3 13 | grplcan | ⊢ ( ( 𝑊  ∈  Grp  ∧  ( ( 0g ‘ 𝑊 )  ∈  𝑉  ∧   1   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  ( (  1  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  (  1  ( +g ‘ 𝑊 )  1  )  ↔  ( 0g ‘ 𝑊 )  =   1  ) ) | 
						
							| 59 | 55 56 57 57 58 | syl13anc | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  ( (  1  ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  (  1  ( +g ‘ 𝑊 )  1  )  ↔  ( 0g ‘ 𝑊 )  =   1  ) ) | 
						
							| 60 | 54 59 | mpbid | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  ( 0g ‘ 𝑊 )  =   1  ) | 
						
							| 61 | 30 35 60 | 3eqtrd | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →  (  0   ·  ( 0g ‘ 𝑊 ) )  =   1  ) | 
						
							| 62 | 19 23 61 | 3eqtr3rd | ⊢ ( ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  ∧  (  0   ∈  𝑉  ∧   1   ∈  𝑉 ) )  →   1   =   0  ) | 
						
							| 63 | 8 62 | mpdan | ⊢ ( ( 𝑊  ∈  LMod  ∧   +   =   ·  )  →   1   =   0  ) | 
						
							| 64 | 63 | ex | ⊢ ( 𝑊  ∈  LMod  →  (  +   =   ·   →   1   =   0  ) ) | 
						
							| 65 | 64 | necon3d | ⊢ ( 𝑊  ∈  LMod  →  (  1   ≠   0   →   +   ≠   ·  ) ) | 
						
							| 66 | 65 | imp | ⊢ ( ( 𝑊  ∈  LMod  ∧   1   ≠   0  )  →   +   ≠   ·  ) |