| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcomf.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lcomf.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
|
lcomf.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
lcomf.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 5 |
|
lcomf.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 6 |
|
lcomf.g |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐾 ) |
| 7 |
|
lcomf.h |
⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ 𝐵 ) |
| 8 |
|
lcomf.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 9 |
4 1 3 2
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 10 |
9
|
3expb |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 11 |
5 10
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 12 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 13 |
11 6 7 8 8 12
|
off |
⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) : 𝐼 ⟶ 𝐵 ) |