Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcomf.f | |- F = ( Scalar ` W ) |
|
| lcomf.k | |- K = ( Base ` F ) |
||
| lcomf.s | |- .x. = ( .s ` W ) |
||
| lcomf.b | |- B = ( Base ` W ) |
||
| lcomf.w | |- ( ph -> W e. LMod ) |
||
| lcomf.g | |- ( ph -> G : I --> K ) |
||
| lcomf.h | |- ( ph -> H : I --> B ) |
||
| lcomf.i | |- ( ph -> I e. V ) |
||
| Assertion | lcomf | |- ( ph -> ( G oF .x. H ) : I --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomf.f | |- F = ( Scalar ` W ) |
|
| 2 | lcomf.k | |- K = ( Base ` F ) |
|
| 3 | lcomf.s | |- .x. = ( .s ` W ) |
|
| 4 | lcomf.b | |- B = ( Base ` W ) |
|
| 5 | lcomf.w | |- ( ph -> W e. LMod ) |
|
| 6 | lcomf.g | |- ( ph -> G : I --> K ) |
|
| 7 | lcomf.h | |- ( ph -> H : I --> B ) |
|
| 8 | lcomf.i | |- ( ph -> I e. V ) |
|
| 9 | 4 1 3 2 | lmodvscl | |- ( ( W e. LMod /\ x e. K /\ y e. B ) -> ( x .x. y ) e. B ) |
| 10 | 9 | 3expb | |- ( ( W e. LMod /\ ( x e. K /\ y e. B ) ) -> ( x .x. y ) e. B ) |
| 11 | 5 10 | sylan | |- ( ( ph /\ ( x e. K /\ y e. B ) ) -> ( x .x. y ) e. B ) |
| 12 | inidm | |- ( I i^i I ) = I |
|
| 13 | 11 6 7 8 8 12 | off | |- ( ph -> ( G oF .x. H ) : I --> B ) |