Metamath Proof Explorer


Theorem lmodvscl

Description: Closure of scalar product for a left module. ( hvmulcl analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvscl.v
|- V = ( Base ` W )
lmodvscl.f
|- F = ( Scalar ` W )
lmodvscl.s
|- .x. = ( .s ` W )
lmodvscl.k
|- K = ( Base ` F )
Assertion lmodvscl
|- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. V )

Proof

Step Hyp Ref Expression
1 lmodvscl.v
 |-  V = ( Base ` W )
2 lmodvscl.f
 |-  F = ( Scalar ` W )
3 lmodvscl.s
 |-  .x. = ( .s ` W )
4 lmodvscl.k
 |-  K = ( Base ` F )
5 biid
 |-  ( W e. LMod <-> W e. LMod )
6 pm4.24
 |-  ( R e. K <-> ( R e. K /\ R e. K ) )
7 pm4.24
 |-  ( X e. V <-> ( X e. V /\ X e. V ) )
8 eqid
 |-  ( +g ` W ) = ( +g ` W )
9 eqid
 |-  ( +g ` F ) = ( +g ` F )
10 eqid
 |-  ( .r ` F ) = ( .r ` F )
11 eqid
 |-  ( 1r ` F ) = ( 1r ` F )
12 1 8 3 2 4 9 10 11 lmodlema
 |-  ( ( W e. LMod /\ ( R e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( R .x. X ) e. V /\ ( R .x. ( X ( +g ` W ) X ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) /\ ( ( R ( +g ` F ) R ) .x. X ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) ) /\ ( ( ( R ( .r ` F ) R ) .x. X ) = ( R .x. ( R .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X ) ) )
13 12 simpld
 |-  ( ( W e. LMod /\ ( R e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( R .x. X ) e. V /\ ( R .x. ( X ( +g ` W ) X ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) /\ ( ( R ( +g ` F ) R ) .x. X ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) ) )
14 13 simp1d
 |-  ( ( W e. LMod /\ ( R e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( R .x. X ) e. V )
15 5 6 7 14 syl3anb
 |-  ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. V )